首页> 外文期刊>Applied Mathematical Modelling >On the optimal modeling and evaluation of job shops with a total weighted tardiness objective: Constraint programming vs. mixed integer programming
【24h】

On the optimal modeling and evaluation of job shops with a total weighted tardiness objective: Constraint programming vs. mixed integer programming

机译:关于总加权拖欠时间目标的车间的最佳建模和评估:约束规划与混合整数规划

获取原文
获取原文并翻译 | 示例

摘要

In this study we consider the mapping of the main characteristics, i.e., the structural properties, of a classical job shop problem onto well-known combinatorial techniques, i.e., positional sets, disjunctive graphs, and linear orderings. We procedurally formulate three different models in terms of mixed integer programming (MIP) and constraint programming (CP) paradigms. We utilize the properties of positional sets and disjunctive graphs to construct tight MIP formulations in an efficient manner. In addition, the properties are retrieved by the polyhedral structures of the linear ordering and they are defined on a disjunctive graph to facilitate the formulation of the CP model and to reduce the number of dominant variables. The proposed models are solved and their computational performance levels are compared with well-known benchmarks in the job shop research area using IBM ILog Cplex software. We provide a more explicit analogy of the applicability of the proposed models based on parameters such as time efficiency, thereby producing strong bounds, as well as the expressive power of the modeling process. We also discuss the results to determine the best formulation, which is computationally efficient and structurally parsimonious with respect to different criteria.
机译:在这项研究中,我们考虑了将经典作业车间问题的主要特征(即结构特性)映射到众所周知的组合技术(即位置集,析取图和线性排序)上的映射。我们在程序上根据混合整数编程(MIP)和约束编程(CP)范例制定了三种不同的模型。我们利用位置集和析取图的属性以有效的方式构造紧密的M​​IP公式。另外,通过线性有序的多面体结构检索这些特性,并在分离图上定义它们,以利于CP模型的制定并减少主导变量的数量。使用IBM ILog Cplex软件对提出的模型进行了求解,并将其计算性能水平与车间研究领域中的知名基准进行了比较。我们基于诸如时间效率之类的参数,对提议的模型的适用性提供了更为明确的类比,从而产生了强大的界限以及建模过程的表达能力。我们还讨论了确定最佳配方的结果,该配方相对于不同的标准在计算效率和结构上都是简约的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号