首页> 外文期刊>Applied Mathematical Modelling >Gas-dynamic equations for spatially inhomogeneous gas mixtures with internal degrees of freedom. Ⅲ. Renormalized reaction rates
【24h】

Gas-dynamic equations for spatially inhomogeneous gas mixtures with internal degrees of freedom. Ⅲ. Renormalized reaction rates

机译:具有内部自由度的空间不均匀混合气体的气体动力学方程式。 Ⅲ。重新标准化反应速度

获取原文
获取原文并翻译 | 示例

摘要

In previous papers (Kolesnichenko and Gorbachev, 2010, 2013) the general approach for solving kinetic equations for gas mixtures with internal degrees of freedom and for obtaining corresponding gas-dynamic equations was develope. In paper (Kolesnichenko and Gorbachev, 2013) general expressions for the reaction rates were derived for zero-order (Euler) gas-dynamic equations for a one-temperature case. The contributions of two different types of non-equilibrium effect were considered: spatially homogeneous and spatially inhomogeneous (the last represented by the terms proportional to velocity divergency) (Kolesnichenko and Gorbachev, 2010, 2013). General expressions were obtained for reaction rates containing integrals, with the functions which satisfy their corresponding integral equations. In the present article studies concerning derivation of the expressions for reaction rates are continued and a form, named renormalized, is obtained for those reaction rates. In contrast to the previous result (Kolesnichenko and Gorbachev, 2013)the factor which has an explicit rational-function dependence on the species densities can be separated within the renormalized expression for the reaction rate. The procedure of solving integral equations using an expansion over various complete sets of polynomials is discussed. One-reaction case is considered. The expressions derived for reaction rates are analyzed.
机译:在先前的论文(Kolesnichenko和Gorbachev,2010,2013)中,开发了求解内部自由度的气体混合物动力学方程并获得相应的气体动力学方程的通用方法。在论文中(Kolesnichenko和Gorbachev,2013),针对一温度情况下的零阶(Euler)气体动力学方程式,推导了反应速率的一般表达式。考虑了两种不同类型的非平衡效应的贡献:空间均匀和空间不均匀(最后一个由与速度散度成比例的术语表示)(Kolesnichenko和Gorbachev,2010,2013)。获得了包含积分的反应速率的一般表达式,其函数满足其对应的积分方程。在本文中,继续进行有关推导反应速率表达式的研究,并获得了那些反应速率的形式,称为重归一化。与之前的结果(Kolesnichenko和Gorbachev,2013)相反,可以在重新归一化的表达式中分离出对物种密度具有明显的理性函数依赖性的因子。讨论了使用多项式完整的多项式展开式求解积分方程的过程。考虑一种反应情况。分析针对反应速率得出的表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号