首页> 外文期刊>Applied Mathematical Modelling >A multiple-state discrete-time Markov chain model for estimating suspended sediment concentrations in open channel flow
【24h】

A multiple-state discrete-time Markov chain model for estimating suspended sediment concentrations in open channel flow

机译:用于估计明渠水流中悬浮泥沙浓度的多状态离散时间马尔可夫链模型

获取原文
获取原文并翻译 | 示例

摘要

Transport processes of uniform size sediment particles in steady and uniform flow are described by a multi-state discrete-time Markov chain. The multi-state discrete-time Markov chain is employed to estimate the suspended sediment concentration distribution versus water depth for various steady and uniform flow conditions. Model results are validated against available measurement data and the Rouse profile. Moreover, the proposed model is used to quantify the average time required to reach dynamic equilibrium of particle deposition and entrainment processes. Firstly, suspended sediment concentrations under three different flow conditions are discussed. As the Rouse parameter decreases, the difference between the suspended sediment concentration estimated by the Markov chain model and the Rouse profile becomes more significant, and is larger for higher relative height from the bed. It is speculated that the use of the terminal settling velocity in the transport process can lead to underestimation of the residence probability and overesti-mation of the deposition probability. Secondly, laboratory experiments are used to validate the proposed model. It is observed that as the Rouse parameter decreases, more time is required for the sediment concentration to reach a dynamic equilibrium. The flow depth is found to have an impact on the time spent to reach the concentration dynamic equilibrium. It is recognized that the performance of the proposed model relies heavily on the knowledge of the vertical distribution of the turbulence intensity. Also, for lower Rouse parameters, concentrations estimated by the Markov chain model exhibit larger variation compared to those estimated by the Rouse profile.
机译:用多状态离散时间马尔可夫链描述了均匀大小的沉积物颗粒在稳定和均匀流动中的传输过程。采用多状态离散时间马尔可夫链来估计各种稳定和均匀流动条件下悬浮沉积物浓度分布与水深的关系。根据可用的测量数据和Rouse轮廓验证模型结果。此外,提出的模型用于量化达到颗粒沉积和夹带过程动态平衡所需的平均时间。首先,讨论了三种不同流动条件下的悬浮泥沙浓度。随着Rouse参数的减小,由Markov链模型估算的悬浮沉积物浓度与Rouse轮廓之间的差异变得更加显着,并且对于离床层相对较高的高度而言,差异也更大。据推测,在运输过程中使用最终沉降速度会导致滞留概率的低估和沉积概率的高估。其次,通过实验室实验来验证所提出的模型。可以看出,随着Rouse参数的减小,沉积物浓度达到动态平衡需要更多的时间。发现流动深度会影响达到浓度动态平衡所需的时间。公认的是,所提出的模型的性能在很大程度上取决于湍流强度的垂直分布的知识。同样,对于较低的Rouse参数,与由Rouse曲线估计的浓度相比,由Markov链模型估计的浓度表现出较大的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号