首页> 外文期刊>Applied Mathematical Modelling >A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions
【24h】

A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions

机译:具有一般边界条件的正交各向异性圆形,环形和扇形板自由面内振动的统一解决方案

获取原文
获取原文并翻译 | 示例

摘要

To study the free in-plane vibration for the orthotropic circular, annular and sector plates with general boundary conditions, a modified Fourier-Ritz approach is developed. In this approach, several auxiliary closed-form functions are added to the standard Fourier cosine series to obtain a robust function. The introduction of these auxiliary functions can eliminate all the potential discontinuities of the original displacement function and its derivatives in whole domain and then effectively improve the convergence of the results. All the displacements are expressed with the modified Fourier series expansion and the arbitrary boundary conditions and the appropriate continuity conditions along the radial edges are realized by introducing the artificial boundary spring technique and artificial coupling spring technique. In addition, the Ritz procedure based on the energy functions of the plates is adopted to obtain the accurate solution since the constructed displacement field is adequately smooth in the whole solution domain. By numerical examples involving the plates of various shapes and with different boundary conditions, the reliability, accuracy and versatility of the current method get fully demonstrated. On this basis, some new results for the free in-plane vibration problem of orthotropic circular, annular and sector plates with various boundary conditions and the parameter study are also presented, which may be served as benchmark solutions for future researches.
机译:为了研究具有一般边界条件的正交各向异性圆形,环形和扇形板的自由面内振动,开发了一种改进的Fourier-Ritz方法。在这种方法中,将几个辅助闭式函数添加到标准傅里叶余弦序列中以获得鲁棒函数。这些辅助函数的引入可以在整个域中消除原始位移函数及其导数的所有潜在不连续性,然后有效地提高结果的收敛性。所有位移都用改进的傅里叶级数展开表示,并通过引入人工边界弹簧技术和人工耦合弹簧技术,实现了任意边界条件,以及沿径向边缘的适当连续性条件。另外,由于构造的位移场在整个解域内足够平滑,因此采用基于板的能量函数的Ritz程序来获得精确解。通过涉及各种形状,边界条件不同的板的数值例子,充分证明了当前方法的可靠性,准确性和通用性。在此基础上,针对正交异性圆,环形和扇形板在各种边界条件下的自由面振动问题以及参数研究提供了一些新的结果,可以作为今后研究的基准解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号