首页> 外文期刊>Applied Mathematical Modelling >Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe_3O_4-water nanofluid in the presence of Joule heating
【24h】

Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe_3O_4-water nanofluid in the presence of Joule heating

机译:焦耳热存在下充有Fe_3O_4-水纳米流体的正弦加热盖驱动腔内MHD自然对流的数值研究

获取原文
获取原文并翻译 | 示例

摘要

In the present contribution, the conjugate effect of Joule heating and Lorenz force acting on MHD natural convection and entropy generation inside a lid-driven cavity filled with Fe_3O_4-water nanofluid has been studied numerically. A sinusoidal temperature distribution on both vertical sides is considered, while the horizontal walls are kept adiabatic. The physical problem is represented mathematically by sets of governing partial differential equations and an accurate finite volume method is employed to solve the equations of flow and temperature fields. The study has been carried out for a wide range of Hartmann number Ha = 0 to 50, Eckert number Ec = 0.025 to 0.075, solid volume fraction φ = 0 to 0.06, and phase deviation of temperature distribution γ = 0 to π. The numerical results for cases with and without internal Joule heating are presented in terms of streamlines, isotherms, average Nusselt number, entropy generation, and Bejan number. The results show that the heat transfer rate reduces with the increase of either Hartmann or Eckert number. In the presence of Joule heating and for all phase deviations, the addition of ferrite nanoparticles to the base fluid improves the heat transfer rate. In addition, the total entropy generation increases with Hartmann and Eckert number as well as the solid volume fraction of nanoparticles.
机译:在目前的贡献中,已经对焦耳加热和洛伦兹力对填充有Fe_3O_4-水纳米流体的盖驱动腔内MHD自然对流和熵产生的共轭效应进行了数值研究。考虑了垂直两侧的正弦温度分布,而水平壁保持绝热。物理问题由控制偏微分方程组数学表示,并采用精确的有限体积方法求解流场和温度场方程。已经针对广泛的哈特曼数Ha = 0至50,埃克特数Ec = 0.025至0.075,固体体积分数φ= 0至0.06以及温度分布的相位偏差γ= 0至π进行了研究。带有和不带有内部焦耳加热情况的数值结果以流线,等温线,平均Nusselt数,熵产生和Bejan数表示。结果表明,传热速率随Hartmann数或Eckert数的增加而降低。在存在焦耳加热的情况下,并且对于所有相位偏差,将铁氧体纳米粒子添加到基础流体中可改善传热速率。另外,总熵产生随着哈特曼和埃克特数以及纳米颗粒的固体体积分数而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号