首页> 外文期刊>Applied Mathematical Modelling >A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains
【24h】

A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains

机译:具有有效方案的新型二阶数值流形方法模型,用于分析内部排水的自由表面流

获取原文
获取原文并翻译 | 示例

摘要

Numerical manifold method (NMM) is a numerical method known for analyzing continuous and discontinuous mechanical processes in a unified mathematical form. In this study we developed a new second-order NMM model to solve the nonlinear problem of water flow with the free surface priori unknown and the difficulty of modeling drains which could dramatically increase the meshing load. Our study consist of: (1) deriving two forms of NMM second-order approximation; (2) constructing the total potential energy for water flow by our energy-work seepage model considering Dirichlet, Neumann and material boundaries uniformly; (3) locating free surface nodes in two forms of second-order approximation; (4) tracking the free surface with an efficient iteration scheme without re-meshing; (5) deriving velocity and tunnel flux by second-order approximation. We developed a new code and demonstrate our model and code with examples including confined drainage tunnel and free surface flow through a dam. We compare the results such as tunnel flux or free surface with linear NMM, analytical or other available numerical solutions. We prove that: the two forms of second-order NMM (1) yield consistent results; (2) for modeling drains involving local intensive change, could achieve accurate result of tunnel flux calculation and dramatically save computation load with linear velocity distribution in coarse mesh; (3) for free surface iteration, are efficient with fast convergence to accurate results and with rather coarse mesh. As a result, our second-order NMM model is applicable to free surface flow with inner drains for free surface locating and flux calculation, and seepage stability analysis, laying a solid foundation for extending to coupled hydro-mechanical analysis.
机译:数值流形方法(NMM)是一种已知的数值方法,用于以统一的数学形式分析连续和不连续的机械过程。在这项研究中,我们开发了一个新的二阶NMM模型,以解决先验未知的水流非线性问题以及建模排水的困难,这可能会大大增加啮合负荷。我们的研究包括:(1)推导两种形式的NMM二阶逼近; (2)利用我们的能量-工作渗流模型,综合考虑Dirichlet,Neumann和材料边界,构造出水流的总势能; (3)以两种二阶近似形式定位自由表面节点; (4)使用有效的迭代方案跟踪自由表面,而无需重新网格化; (5)通过二阶近似推导速度和隧道通量。我们开发了新代码,并通过示例说明了我们的模型和代码,其中包括密闭排水隧道和通过大坝的自由表面流。我们将结果与诸如隧道通量或自由表面与线性NMM,分析或其他可用数值解决方案进行比较。我们证明:两种形式的二阶NMM(1)产生一致的结果; (2)对于涉及局部密集变化的排水管建模,可以达到准确的隧道通量计算结果,并通过粗网格中的线速度分布大大节省计算量; (3)对于自由曲面迭代,效率高,可以快速收敛到准确的结果,并且具有相当粗糙的网格。因此,我们的二阶NMM模型适用于带有内部排水孔的自由表面流,用于自由表面定位和通量计算以及渗流稳定性分析,为扩展到耦合水力力学分析奠定了坚实的基础。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2016年第2期|1427-1445|共19页
  • 作者单位

    College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;

    College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;

    Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;

    Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Numerical manifold method; Second-order; Free surface flow; Inner drain; Fixed mesh; Flux calculation;

    机译:数值流形方法;二阶自由表面流动;内部排水;固定网格;通量计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号