首页> 外文期刊>Applied Mathematical Modelling >Fluid-structure interaction solver for compressible flows with applications to blast loading on thin elastic structures
【24h】

Fluid-structure interaction solver for compressible flows with applications to blast loading on thin elastic structures

机译:用于可压缩流的流体-结构相互作用求解器,用于薄弹性结构上的爆炸载荷

获取原文
获取原文并翻译 | 示例

摘要

In this study, we report the development and application of a fluid-structure interaction (FSI) solver for compressible flows with large-scale flow-induced deformation of the structure. The FSI solver utilizes a partitioned approach to strongly couple a sharp interface immersed boundary method-based flow solver with an open-source finite-element structure dynamics solver. The flow solver is based on a higher-order finite-difference method using a Cartesian grid, where it employs the ghost-cell methodology to impose boundary conditions on the immersed boundary. Higher-order accuracy near the immersed boundary is achieved by combining the ghost-cell approach with a weighted least squares error method based on a higher-order approximate polynomial. We present validations for two-dimensional canonical acoustic wave scattering on a rigid cylinder at a low Mach number and for flow past a circular cylinder at a moderate Mach number. The second order spatial accuracy of the flow solver was established in a grid refinement study. The structural solver was validated according to a canonical elastostatics problem. The FSI solver was validated based on comparisons with published measurements and simulations of the large-scale deformation of a thin elastic steel panel subjected to blast loading in a shock tube. The solver correctly predicted the oscillating behavior of the tip of the panel with reasonable fidelity and the computed shock wave propagation was qualitatively consistent with the published results. In order to demonstrate the fidelity of the solver and to investigate the coupled physics of the shock-structure interaction for a thin elastic plate, we employed the solver to simulate a 6.4 kg TNT blast loading on the thin elastic plate. The initial conditions for the blast were taken from previously reported field tests. Using numerical schlieren, the shock front propagation, Mach reflection, and vortex shedding at the tip of the plate were visualized during the impact of the shock wave on the plate. We discuss the coupling between the nonlinear dynamics of the plate and blast loading. The plate oscillates under the influence of blast loading and the restoration of elastic forces. The time-varying displacement of the tip of the plate is the superimposition of two dominant frequencies, which correspond to the first and second modes of the natural frequency of a vibrating plate. The effects of the material properties and length of the plate on the flow-induced deformation are briefly discussed. The proposed FSI solver is a versatile computational tool for simulating the impact of a blast wave on thin elastic structures and the results presented in this study may facilitate the design of thin structures subjected to realistic blast loadings.
机译:在这项研究中,我们报告了流体-结构相互作用(FSI)解算器的发展和应用,该解算器用于可压缩流以及结构的大规模流致变形。 FSI求解器利用分区方法将基于尖锐界面浸入边界方法的流求解器与开源有限元结构动力学求解器强耦合。流动求解器基于使用笛卡尔网格的高阶有限差分方法,该方法使用重影元方法将边界条件强加于浸入边界。通过将重影元方法与基于高阶近似多项式的加权最小二乘误差方法相结合,可以实现接近浸入边界的高阶精度。我们提出了在低马赫数下在刚性圆柱体上进行二维规范声波散射以及在中等马赫数下通过圆柱体进行流动的验证。在网格优化研究中建立了流量求解器的二阶空间精度。根据典型的弹性问题验证了结构求解器。 FSI解算器是根据与已发布的测量结果进行比较而进行验证的,并对在冲击管中承受爆炸载荷的薄弹性钢板的大规模变形进行了模拟。该求解器以合理的保真度正确地预测了面板尖端的振动行为,并且计算得出的冲击波传播在质量上与已发表的结果一致。为了证明求解器的保真度并研究薄弹性板的冲击-结构相互作用的耦合物理,我们使用求解器来模拟薄弹性板上的6.4 kg TNT爆炸载荷。爆炸的初始条件取自先前报道的现场测试。使用数值刻线,在冲击波对板的冲击过程中,可以看到板前端的激波前传播,马赫反射和涡旋脱落。我们讨论了板的非线性动力学与爆炸载荷之间的耦合。板在爆炸载荷和弹性力恢复的影响下振荡。板尖端的时变位移是两个主频率的叠加,这两个主频率对应于振动板固有频率的第一和第二模式。简要讨论了材料特性和板长对流动引起的变形的影响。拟议中的FSI求解器是一种通用的计算工具,用于模拟爆炸波对薄弹性结构的影响,本研究结果表明,该设计可能有助于承受实际爆炸载荷的薄结构的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号