首页> 外文期刊>Applied Mathematical Modelling >Modeling the impact of discretizing rotor angular position on computation of field-oriented current components in high speed electric drives
【24h】

Modeling the impact of discretizing rotor angular position on computation of field-oriented current components in high speed electric drives

机译:离散化转子角位置对高速电驱动器中的磁场定向电流分量的影响的建模

获取原文
获取原文并翻译 | 示例
       

摘要

Modern drives consist of alternating current electric motors, and the field-oriented control (FOC) of such motors enables fast precise, and robust regulation of a drive's mechanical variables such as torque, speed, and position. The control algorithm, implemented in a microprocessor, requires feedback from motor currents, and the quality of this feedback is essential to a drive's control properties. Motor phase currents are sampled and processed in order to extract their mean over a digital control interval. Afterwards, the mean phase currents are transformed into a rotating field-oriented reference frame to enable controlling the mechanical variables. The field-oriented frame rotates continuously, but in practice the transformation is carried out using a discrete angular position. This paper investigates how the discretization impacts the computed field-oriented currents in high speed drives, where the rotor displacement during a control interval is substantial. A continuous-time model of field-oriented currents is indicated as a reference to quantify errors. An original approach to normalize variables and to solve the model analytically is proposed in order to investigate how the errors related to rotor position discretization are influenced by drive operating conditions. The analytical solution is validated by computer simulation. The results show that the currently applied methodology of computing field-oriented current components, due to an invalid assumption, introduces errors of a few percent when a drive operates at high speed. These errors can be compensated using the presented solution.
机译:现代驱动器由交流电动机组成,此类电动机的磁场定向控制(FOC)可以对驱动器的机械变量(例如转矩,速度和位置)进行快速精确且鲁棒的调节。在微处理器中实现的控制算法需要电动机电流的反馈,并且此反馈的质量对于驱动器的控制特性至关重要。对电动机相电流进行采样和处理,以便在数字控制间隔内提取其平均值。然后,将平均相电流转换为面向旋转磁场的参考系,以实现对机械变量的控制。磁场定向的框架连续旋转,但是实际上,变换是使用离散的角位置进行的。本文研究了离散如何影响高速驱动器中计算得出的磁场定向电流,其中在控制间隔内转子位移很大。方向性电流的连续时间模型被指示为量化误差的参考。为了研究与转子位置离散化有关的误差如何受到驱动工况的影响,提出了一种使变量归一化并通过解析求解模型的原始方法。该分析解决方案已通过计算机仿真验证。结果表明,由于无效的假设,当前应用的计算面向磁场的电流分量的方法会在驱动器高速运行时引入百分之几的误差。这些误差可以使用提出的解决方案来补偿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号