首页> 外文期刊>Applied Mathematical Modelling >Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization
【24h】

Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization

机译:使用小帧正则化的低秩非负矩阵分解实现高光谱图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image (HSI) restoration is a process to remove a mixture of various kinds of noise, which is a key preprocessing step to improve the performance of subsequent applications. Since the HSI has a large correlation between spectral bands and abundant geometric features in the spatial domain, thus the low-rank prior and spatial structure prior can be introduced to HSI restoration. However, many existing approaches usually directly use the nuclear norm and total variation (TV) regularization to depict the spectral-spatial priors of HSI, which inevitably requires singular value decomposition (SVD) computation and causes staircase artifacts in the image, respectively. To overcome these limitations, in this work, we propose a novel HSI restoration method named framelet-regularized low rank nonnegative matrix factorization (F-LRNMF), in which the low-rank nonnegative matrix factorization is developed to describe that the HSI lies in a low-rank subspace. Furthermore, to decrease the staircase artifacts caused by TV regularization that directly applies to HSI, we use framelet regularization to constrain the factor whose size is much less than HSI itself. The framelet regularization can effectively preserve the details and geometric features of the restored HSI in the spatial domain. An efficient block successive upper-bound minimization (BSUM) algorithm is designed to solve the proposed optimization model. Meanwhile, we theoretically analyze that the algorithm can converge to the set of coordinate-wise minimizers. Experiments under various cases of simulated and real HSI data demonstrate the effectiveness of the proposed model and the efficiency of the numerical algorithm in terms of both quantitative and qualitative assessments. (C) 2018 Elsevier Inc. All rights reserved.
机译:高光谱图像(HSI)恢复是一种去除各种噪声的混合物的过程,这是提高后续应用程序性能的关键预处理步骤。由于HSI在光谱带与空间域中丰富的几何特征之间具有较大的相关性,因此可以将低秩先验和空间结构先验引入HSI恢复。然而,许多现有方法通常直接使用核范数和总变异(TV)正则化来描述HSI的频谱空间先验,这不可避免地需要奇异值分解(SVD)计算并分别在图像中引起阶梯状伪像。为了克服这些局限性,在这项工作中,我们提出了一种新颖的HSI恢复方法,称为小帧正则化低秩非负矩阵分解(F-LRNMF),其中开发了低秩非负矩阵因式分解来描述HSI位于低阶子空间。此外,为了减少直接应用于HSI的电视正则化所引起的阶梯伪影,我们使用框架正则化来约束其大小远小于HSI本身的因子。框架的正则化可以有效地在空间域中保留恢复的HSI的细节和几何特征。设计了一种有效的块连续上限最小化(BSUM)算法来解决所提出的优化模型。同时,我们从理论上分析该算法可以收敛到按坐标最小化器的集合。在各种模拟和真实HSI数据情况下进行的实验证明了该模型的有效性以及数值算法在定量和定性评估方面的效率。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号