首页> 外文期刊>Applied Mathematical Modelling >Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method
【24h】

Model recovery for Hammerstein systems using the auxiliary model based orthogonal matching pursuit method

机译:使用基于辅助模型的正交匹配追踪方法进行Hammerstein系统的模型恢复

获取原文
获取原文并翻译 | 示例

摘要

This article investigates parameter and order identification of a block-oriented Hammerstein system by using the orthogonal matching pursuit method in the compressive sensing theory which deals with how to recover a sparse signal in a known basis with a linear measurement model and a small set of linear measurements. The idea is to parameterize the Hammerstein system into the linear measurement model containing a measurement matrix with some unknown variables and a sparse parameter vector by using the key variable separation principle, then an auxiliary model based orthogonal matching pursuit algorithm is presented to recover the sparse vector. The standard orthogonal matching pursuit algorithm with a known measurement matrix is a popular recovery strategy by picking the supporting basis and the corresponding nonzero element of a sparse signal in a greedy fashion. In contrast to this, the auxiliary model based orthogonal matching pursuit algorithm has unknown variables in the measurement matrix. For a K-sparse signal, the standard orthogonal matching pursuit algorithm takes a fixed number of K stages to pick K columns (atoms) in the measurement matrix, while the auxiliary model based orthogonal matching pursuit algorithm takes steps larger than K to pick K atoms in the measurement matrix with the process of picking and deleting atoms, due to the gradually accurate estimates of the unknown variables step by step. The auxiliary model based orthogonal matching pursuit algorithm can simultaneously identify parameters and orders of the Hammerstein system, and has a high efficient identification performance.
机译:本文使用压缩感测理论中的正交匹配追踪方法研究面向块的Hammerstein系统的参数和阶数识别,该方法采用线性测量模型和一小部分线性模型处理如何在已知基础上恢复稀疏信号测量。想法是通过使用关键变量分离原理将Hammerstein系统参数化为包含带有未知变量的测量矩阵和稀疏参数向量的线性测量模型,然后提出一种基于辅助模型的正交匹配追踪算法以恢复稀疏向量。具有已知测量矩阵的标准正交匹配追踪算法是一种流行的恢复策略,它以贪婪的方式选择稀疏信号的支持基础和相应的非零元素。与此相反,基于辅助模型的正交匹配追踪算法在测量矩阵中具有未知变量。对于K稀疏信号,标准正交匹配追踪算法采用固定数量的K阶来选择测量矩阵中的K列(原子),而基于辅助模型的正交匹配追踪算法则采用大于K的步长来选取K个原子。由于逐步逐步准确估计未知变量,因此在测量矩阵中具有选择和删除原子的过程。基于辅助模型的正交匹配追踪算法可以同时识别Hammerstein系统的参数和阶次,具有很高的识别性能。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2018年第2期|537-550|共14页
  • 作者单位

    College of Automation and Electrical Engineering, Qingdao University, Qingdao 266071, PR China;

    College of Automation and Electrical Engineering, Qingdao University, Qingdao 266071, PR China;

    College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, PR China;

    College of Automation and Electrical Engineering, Qingdao University, Qingdao 266071, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressive sensing; Orthogonal matching pursuit; Parameter estimation; Hammerstein system;

    机译:压缩感测;正交匹配追求;参数估计;哈默斯坦系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号