首页> 外文期刊>Applied Intelligence >An approach to conversational agent design using semantic sentence similarity
【24h】

An approach to conversational agent design using semantic sentence similarity

机译:一种基于语义句子相似度的会话代理设计方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel framework for constructing a Semantic-Based Conversational Agent (SCAF). Traditional conversational agents (CA) interpret scripts using structural patterns of sentences, which require the script writer to consider every possible permutation that a user may send as input to the CA. This is a time-consuming process, which takes no consideration of semantic content, working solely with the structural form of the sentence. Furthermore, this has proven to be a high maintenance task that can produce some unforeseen consequences when modifying or introducing new patterns into a script. This invariably results in the script writer reassessing the entire script to prevent such occurrences. Different script writers possess differing levels of skill and as such this can prove to be an exasperating task. The proposed SCAF interprets scripts consisting of natural language sentences by means of a semantic sentence similarity measure. User input is measured semantically against the natural language sentences of the context in order to respond with an appropriate output. Such scripting is effortless and alleviates the burden of the traditional pattern-scripted methodologies. Evaluation of the framework has highlighted its potential and shown improvements on traditional CAs.
机译:本文提出了一种用于构造基于语义的会话代理(SCAF)的新颖框架。传统的对话代理(CA)使用句子的结构模式来解释脚本,这要求脚本编写者考虑用户可能作为输入发送给CA的所有可能排列。这是一个耗时的过程,它不考虑语义内容,仅处理句子的结构形式。此外,事实证明,这是一项高维护性任务,当在脚本中修改或引入新模式时可能会产生无法预料的后果。这总是会导致脚本编写者重新评估整个脚本,以防止发生此类情况。不同的脚本编写者具有不同的技能水平,因此这可能被证明是一个令人生畏的任务。提出的SCAF通过语义句子相似性度量来解释由自然语言句子组成的脚本。针对上下文的自然语言句子对用户输入进行语义上的衡量,以响应适当的输出。这样的脚本编写很轻松,减轻了传统的模式脚本编写方法的负担。对框架的评估突出了其潜力,并显示了对传统CA的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号