首页> 外文期刊>Applied Energy >A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source
【24h】

A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source

机译:一种生产生物柴油的方法,涉及以甘油为碳源的原绿小球藻的异养发酵

获取原文
获取原文并翻译 | 示例
       

摘要

Oil-rich biomass has been produced from heterotrophic fed-batch and semi-continuous cultures of Chlorella protothecoides in conventional 2-L stirred-tank bioreactors (STBs). The process pH is controlled by injection of CO_2 and pure glycerol is the main carbon source in the culture medium. Whereas a maximum biomass concentration of 64 g L~(-1) was achieved in fed-batch mode, semi-continuous culture at a dilution rate of 0.2 day~(-1) yielded the best average results, with biomass and saponifiable lipid (oil) productivities of 8.7 and 4.3 g L~(-1) day~(-1), respectively. Both operational modes resulted in a high saponifiable oil content (>35% of dry biomass), with the highest value (around 50% of dry biomass) being obtained in semi-continuous mode. The unsaponifiable lipid content was always less than 8% (of dry biomass). These results are superior to those reported in the literature for glycerol but practically identical to those achieved with glucose. The major fatty acids (FAs) in the saponifiable lipid fraction were oleic (C18:1), linoleic (C18:2), and palmitic (C16.-0), which together accounted for around 89% of the total FA content. Oleic acid was the most abundant FA, accounting for >60% of total FAs. Biodiesel was obtained using a modified process based on transesterification of wet biomass paste, with a recovery of nearly 97%. The biodiesel obtained complies with the specifications defined in current standards (ASTM Biodiesel Standard D67Slin US and Standard EN 14214 in EU).
机译:在传统的2L搅拌罐式生物反应器(STB)中,由原营养小球藻的异养补料分批培养和半连续培养产生了富油生物质。通过注入CO_2控制过程pH值,纯甘油是培养基中的主要碳源。分批补料模式下最大生物量浓度为64 g L〜(-1),稀释比为0.2天〜(-1)的半连续培养获得了最佳的平均结果,其中生物量和可皂化的脂质(油的生产率分别为8.7和4.3 g L〜(-1)天〜(-1)。两种操作模式均导致较高的皂化油含量(> 35%的干生物质),其中最高值(约50%的干生物质)以半连续模式获得。不可皂化的脂质含量始终小于(干燥生物质的)8%。这些结果优于甘油文献中报道的结果,但实际上与葡萄糖获得的结果相同。可皂化脂质部分中的主要脂肪酸(FAs)是油酸(C18:1),亚油酸(C18:2)和棕榈酸(C16.-0),它们合计占总FA含量的89%左右。油酸是最丰富的脂肪酸,占总脂肪酸的60%以上。使用基于湿生物质糊的酯交换反应的改良工艺获得生物柴油,回收率接近97%。获得的生物柴油符合当前标准(美国ASTM生物柴油标准D67Slin和欧盟标准EN 14214)中定义的规格。

著录项

  • 来源
    《Applied Energy》 |2013年第3期|341-349|共9页
  • 作者单位

    Department of Chemical Engineering, Univer- sity of Almeria, Ctra. Sacramento, S/N, 04120 Almeria, Spain;

    Department of Chemical Engineering, University of Almerta, E04120 Almeria, Spain;

    Department of Chemical Engineering, University of Almerta, E04120 Almeria, Spain;

    Department of Chemical Engineering, University of Almerta, E04120 Almeria, Spain;

    Department of Chemical Engineering, University of Almerta, E04120 Almeria, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heterotrophic; chlorella protothecoides; glycerol; biodiesel; microalgae;

    机译:异养小球藻原球藻;甘油生物柴油微藻;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号