首页> 外文期刊>Applied Energy >A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine
【24h】

A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine

机译:使用支持向量机的太阳能应用中超级电容器-电池混合储能系统的负荷预测能量管理系统

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a battery's high energy density with a supercapacitors' high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive energy management system with conventional sequential programming control (if-else condition). An optimized load prediction classification model is investigated and implemented. This C-Support Vector Classification yields classification accuracy of 100% using 17 support vectors in 0.004866 s of training time. The Polynomial kernel is the optimum kernel in our experiments where the C and g values are 2 and 0.25 respectively. However, for the load profile regression model which was implemented in the K-step ahead of load prediction, the radial basis function (RBF) kernel was chosen due to the highest squared correlation coefficient and the lowest mean squared error. Results obtained shows that the proposed SVM load predictive energy management system accurately identifies and predicts the load demand. This has been justified by the supercapacitor charging and leading the peak current demand by 200 ms for different load profiles with different optimized regression models. This methodology optimizes the cost of the system by reducing the amount of power electronics within the hybrid energy storage system, and also prolongs the batteries' lifespan as previously mentioned. (C) 2014 Elsevier Ltd. All rights reserved.
机译:本文介绍了使用支持向量机负荷预测能量管理系统来控制太阳能源,超级电容器-电池混合储能组合和负荷之间的能量流。超级电容器-电池混合储能系统被部署在太阳能系统中,以提高输出功率的可靠性。电池和超级电容器的组合利用了互补的特性,使电池的高能量密度与超级电容器的高功率密度重叠。通过利用每个特性,该混合系统比任何一个单独的系统都具有直接优势。当超级电容器满足瞬时峰值功率以延长电池寿命时,它还可以最大程度地降低系统成本,并通过减少电池数量来确保系统更环保。最终的性能高度依赖于系统中实施的能量控制,以利用能量存储设备的优势并最大程度地减少其缺点。至关重要的是使用超级电容器的能量,从而最大程度地降低危害电力系统可靠性的能力,尤其是在突然出现峰值功率需求时。这项研究分为两个阶段。第一阶段是获得最佳的SVM负荷预测模型,第二阶段是将所建议的SVM负荷预测能量管理系统与常规顺序编程控制(如果为其他条件)进行性能比较。研究并实现了优化的负荷预测分类模型。使用C支持向量分类在0.004866 s的训练时间内使用17个支持向量可实现100%的分类精度。在我们的实验中,多项式核是最优核,其中C和g值分别为2和0.25。但是,对于在负荷预测之前的K步中实施的负荷曲线回归模型,由于最高的平方相关系数和最低的均方误差,因此选择了径向基函数(RBF)核。获得的结果表明,所提出的SVM负荷预测能源管理系统可以准确地识别和预测负荷需求。超级电容器充电已证明了这一点,并针对具有不同优化回归模型的不同负载曲线将峰值电流需求领先200 ms。这种方法通过减少混合能源存储系统中的电力电子设备数量来优化系统成本,并且如前所述,还可以延长电池的使用寿命。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号