首页> 外文期刊>Applied Energy >Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor
【24h】

Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor

机译:燃气轮机模型燃烧室不同氧化环境下非预混甲烷火焰的稳定性图

获取原文
获取原文并翻译 | 示例

摘要

Oxy-fuel combustion provides a promising solution to the problem of excessive NOx emissions generated by air-based combustion systems; NOx is potentially eliminated in the absence of air-based nitrogen. However, severe temperatures are reached if fuel is burned in pure oxygen. Dilution by CO2 is thus implemented to control the flame temperature. The addition of CO2, however, was found to retard chemical kinetics rates and negatively affect the laminar burning velocity and combustion efficiency. This study thus set out to examine oxy-fuel combustion and compare it to oxygen-enriched air-fuel combustion based on flame stability and appearance. Experiments were conducted on a swirl-stabilized model gas turbine combustor to determine the ranges of stable operation of methane flames in different oxidizer environments, including CO2-diluted oxy-combustion and oxygen-enriched air-combustion. Based on that, two sets of experiments were conducted over ranges of oxidizer Reynolds number, equivalence ratio, and oxygen fraction in the oxidizer mixture. The first set of experiments considered CO2-diluted oxy-combustion, while the second set considered oxygen-enriched air-combustion. For both sets, the results showed that the stability map widens as the oxygen fraction is increased in the oxidizer mixture. This can be attributed to higher flame speeds, which assist flame stabilization under lean operation. For the same oxygen fraction and Reynolds number, the oxy-combustion flames were found to stabilize at higher equivalence ratios and fuel flow rates when compared to the oxygen-enriched air flames. This difference in flame stability magnifies at smaller oxygen fractions and gradually diminishes as the oxygen fraction is increased. (C) 2016 Elsevier Ltd. All rights reserved.
机译:含氧燃料燃烧为基于空气的燃烧系统产生的过量NOx排放问题提供了有希望的解决方案。在不存在基于空气的氮气的情况下,可能会消除NOx。但是,如果燃料在纯氧气中燃烧,则会达到严酷的温度。因此,通过二氧化碳稀释来控制火焰温度。然而,发现添加CO 2会阻碍化学动力学速率,并对层流燃烧速度和燃烧效率产生负面影响。因此,本研究着手研究含氧燃料的燃烧并将其与基于火焰稳定性和外观的富氧空气燃料燃烧进行比较。在涡旋稳定型燃气轮机燃烧器上进行了实验,以确定甲烷氧化剂在不同氧化剂环境中的稳定运行范围,包括CO2稀释的氧气燃烧和富氧的空气燃烧。基于此,在氧化剂混合物中的氧化剂雷诺数,当量比和氧含量的范围内进行了两组实验。第一组实验考虑了用CO2稀释的氧气燃烧,而第二组实验考虑了富氧的空气燃烧。对于这两组,结果表明,随着氧化剂混合物中氧含量的增加,稳定性图变宽。这可以归因于较高的火焰速度,这有助于在稀薄运行下稳定火焰。对于相同的氧气分数和雷诺数,与富氧空气火焰相比,发现氧燃烧火焰在更高的当量比和燃料流量下稳定。火焰稳定性的这种差异在较小的氧气含量时会放大,并随着氧气含量的增加而逐渐减小。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Energy》 |2017年第1期|177-186|共10页
  • 作者单位

    King Fahd Univ Petr & Minerals, KACST TIC CCS, Dhahran 31261, Saudi Arabia|King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia;

    King Fahd Univ Petr & Minerals, KACST TIC CCS, Dhahran 31261, Saudi Arabia|King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia|Cairo Univ, Mech Power Dept, Fac Engn, Giza 12613, Egypt;

    King Fahd Univ Petr & Minerals, KACST TIC CCS, Dhahran 31261, Saudi Arabia|King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia|Univ Alexandria, Mech Engn Dept, Fac Engn, Alexandria 21544, Egypt;

    King Fahd Univ Petr & Minerals, KACST TIC CCS, Dhahran 31261, Saudi Arabia|King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Oxy-combustion; Oxygen-enriched air combustion; Non-premixed flames; Stability maps; Flammability limits; Gas turbine combustor;

    机译:氧气燃烧;富氧空气燃烧;非预混火焰;稳定性图;易燃极限;燃气轮机燃烧室;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号