首页> 外文期刊>Applied Energy >Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations
【24h】

Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations

机译:深度加固学习和高保真模拟智能风电场控制

获取原文
获取原文并翻译 | 示例
           

摘要

Wind farms? power-generation efficiency is constrained by the high system complexity. A novel deep reinforcement learning (RL)-based wind farm control scheme is proposed to handle this challenge and achieve power generation optimization. A reward regularization (RR) module is designed to estimate wind turbines? normalized power outputs under different yaw settings and uncertain wind conditions, which brings strong robustness and adaptability to the proposed control scheme. The RR module is then combined with the deep deterministic policy gradient algorithm to evaluate the optimal yaw settings for all the wind turbines within the farm. The proposed wind farm control scheme is data-driven and model-free, which addresses the limitations of current approaches, including reliance on accurate analytical/parametric models and lack of adaptability to uncertain wind conditions. In addition, a novel composite learning-based controller for each turbine is designed to achieve closed-loop yaw tracking, which can guarantee the exponential convergence of tracking errors in the presence of uncertainties of yaw actuators. The whole control system can be pre-trained offline and fine-tuned online, providing an easy-to-apply solution with enhanced generality and flexibility for wind farms. High-fidelity simulations with SOWFA (simulator for offshore wind farm applications) and Tensorflow show that the proposed scheme can significantly improve the wind farm?s power generation by exploiting a sparse data set without requiring any wake model.
机译:风电场?发电效率受高系统复杂性的约束。提出了一种新的深度加强学习(RL)的风电场控制方案来处理这一挑战并实现发电优化。奖励正则化(RR)模块旨在估算风力涡轮机?不同的偏航设置下的归一化功率输出和不确定的风力条件,对所提出的控制方案带来了强大的鲁棒性和适应性。然后将RR模块与深度确定性政策梯度算法组合,以评估农场内所有风力涡轮机的最佳偏航设置。该建议的风电场控制方案是数据驱动和无模型,其解决了当前方法的局限性,包括依赖于准确的分析/参数模型,缺乏对不确定风力条件的适应性。此外,每个涡轮机的基于新型基于复合学习的控制器设计用于实现闭环偏航跟踪,这可以保证在偏航致动器的不确定性的情况下跟踪误差的指数收敛。整个控制系统可以预先训练离线,并在线微调,提供易于应用的解决方案,具有增强的通用性和风电场的灵活性。使用Sowfa(海上风电场应用程序的模拟器)和Tensorflow的高保真模拟,表明该方案可以通过利用稀疏数据集来显着改善风电场的发电,而无需任何唤醒模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号