首页> 外文期刊>Applied Energy >A data-driven approach towards fast economic dispatch in electricity-gas coupled systems based on artificial neural network
【24h】

A data-driven approach towards fast economic dispatch in electricity-gas coupled systems based on artificial neural network

机译:基于人工神经网络的电力 - 气体耦合系统快速经济派遣数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

The optimization of electricity-gas coupled systems is typically complicated by the nonconvex relationships such as gas flow equations. Piecewise linearization, despite being one of the few solutions that guarantee exactness and optimality, is often discarded for an exceptionally long computational time. In this paper, we present a novel data-driven approach based on artificial neural networks, to enable fast economic dispatch in electricity-gas coupled systems, by utilizing simulation data from the piecewise-linearization-based model-driven method. Load profiles at each electric bus and gas node are fed into the artificial neural network as input neurons; optimal economic dispatch results are set as output neurons, where the dispatch results can be either continuous (e.g. power and gas output) or binary (e.g. scenario feasibility). In generating power and gas outputs, the slack generator method is proposed to further eliminate load mismatch. Case studies on an integrated Belgium 20-node gas/IEEE 24-bus power system show that, after the artificial neural network is properly trained, the data-driven economic dispatch method is 10(4) similar to 10(5) times faster than model-driven piecewise linearization. It even outperforms second-order cone programming, a well-known convex relaxation technique to model natural gas systems, in terms of both the coupled system's state recovery accuracy and computational efficiency. Furthermore, the data-driven method is applied to a multi-period dispatch problem to demonstrate its scalability.
机译:电气气体耦合系统的优化通常由诸如气体流动方程的非凸态关系复杂。分段线性化,尽管是少数保证精确性和最优性的解决方案之一,但通常被丢弃出于特殊的长期计算时间。在本文中,我们通过利用来自基于分段线性化的模型驱动方法的模拟数据,提出了一种基于人工神经网络的新型数据驱动方法,以实现电气气体耦合系统中的快速经济调度。每个电汇和气体节点的负载档案被馈送到人工神经网络中作为输入神经元;最佳经济调度结果被设置为输出神经元,其中调度结果可以是连续的(例如功率和气体输出)或二进制(例如情景可行性)。在发电功率和气体输出时,提出了松弛发生器方法以进一步消除负载不匹配。对集成的比利时20节点气/ IEEE 24总线电力系统的案例研究表明,在人工神经网络经过妥善培训之后,数据驱动的经济调度方法是10(4)次相似的速度比10(5)倍相似模型驱动的分段线性化。在耦合系统的状态恢复精度和计算效率方面,它甚至优于二阶锥形编程,以众所周知的凸起放松技术,以模拟天然气系统。此外,数据驱动方法应用于多周期调度问题以展示其可扩展性。

著录项

  • 来源
    《Applied Energy》 |2021年第15期|116480.1-116480.8|共8页
  • 作者单位

    Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Tsinghua Shenzhen Int Grad Sch Shenzhen 518057 Peoples R China;

    Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Tsinghua Shenzhen Int Grad Sch Shenzhen 518057 Peoples R China;

    Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Tsinghua Shenzhen Int Grad Sch Shenzhen 518057 Peoples R China|Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Tsinghua Shenzhen Int Grad Sch Shenzhen 518057 Peoples R China|Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electricity-gas coupled system; Artificial neural network; Data-driven; Economic dispatch; Piecewise linearization;

    机译:电力 - 气体耦合系统;人工神经网络;数据驱动;经济派遣;分段线性化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号