首页> 外文期刊>Applied Energy >Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia
【24h】

Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia

机译:嗜温和嗜热混合微生物群落中合成气生物甲烷化和分解代谢路径控制的模型

获取原文
获取原文并翻译 | 示例
           

摘要

The syngas biomethanation process is a promising bioconversion route due to its high versatility, as it could be applied as a stand-alone technology, coupled to gasification plants, and integrated in anaerobic digestion or bioelectrochemical conversion systems. The biomethanation of syngas typically takes place through a rather complex network of interspecies metabolic interactions, which may vary significantly depending on the operating conditions applied and the diversity of microbial groups present. Despite there are several benefits derived from using microbial consortia, these also present challenges associated with limited process control and low product selectivity. To address the latter, the syngas biomethanation process carried out by mesophilic and thermophilic microbial consortia was modelled with the ultimate goal of studying possible catabolic route control strategies through the modulation of key operating parameters. The results showed that the thermophilic microbial consortium presented much higher apparent specific methane productivity (18.8 mmol/g VSS/d) than the mesophilic (4.6 mmol/g VSS/d) at an initial P-CO of 0.2 atm, and that the difference increased with increasing initial P-CO. This difference in productivity was found to derive from the catabolic routes used rather than the kinetic parameters of each microbial consortium. Additionally, the thermodynamic considerations included in the models revealed the possibility of controlling the catabolic routes used by each consortium through the modulation of the mass transfer and P-CO2. Our results strongly indicate that modulating the P-CO2 is a promising operational strategy for boosting the product selectivity towards CH4, the productivity of the system and the biomethane quality simultaneously.
机译:合成气生物甲烷化工艺因其高度的多功能性而成为一种有前途的生物转化路线,因为它可以作为独立技术应用,并与气化厂耦合,并集成在厌氧消化或生物电化学转化系统中。合成气的生物甲烷化通常通过物种间代谢相互作用的相当复杂的网络进行,该网络可能会根据所应用的操作条件和所存在的微生物基团的多样性而发生显着变化。尽管使用微生物联盟有许多好处,但这些也带来了与有限的过程控制和较低的产品选择性相关的挑战。为了解决后者,对嗜温和嗜热微生物联盟进行的合成气生物甲烷化过程进行了建模,其最终目标是通过调节关键操作参数来研究可能的分解代谢路径控制策略。结果表明,在初始P-CO为0.2 atm时,嗜热微生物联盟的表观甲烷比生产率(18.8 mmol / g VSS / d)比嗜温性(4.6 mmol / g VSS / d)高得多,并且差异很大随着初始P-CO的增加而增加。发现生产率的这种差异源自所用的分解代谢途径,而不是每个微生物聚生体的动力学参数。此外,模型中包含的热力学考虑因素表明,可以通过调节传质和P-CO2来控制每个财团使用的分解代谢途径。我们的结果强烈表明,调节P-CO2是提高产品对CH4的选择性,同时提高系统生产率和生物甲烷质量的有前途的操作策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号