首页> 美国卫生研究院文献>other >Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase
【2h】

Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

机译:使用厌氧污泥合成气的生物甲烷化:随着CO分压的增加分解代谢途径的转变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.
机译:由生物质或煤炭热气化产生的合成气可以进行蒸汽重整并提纯为甲烷,可将其本地用于能源需求,或重新注入天然气网格。作为化学催化的替代方法,合成气的主要成分(CO,CO2和H2)可以被多种微生物用作底物,转化为气体生物燃料,包括甲烷。这项研究评估了处理废水的上流厌氧污泥床(UASB)反应器中厌氧污泥中存在的羧基营养(CO消耗)产甲烷的潜力,并阐明了在35±3°C下将CO转化为甲烷的途径。在CO的分压(pCO)从0.1至1.5 atm(液相中为0.09–1.31 mmol / L)下进行的动力学活性测试表明,仅在CO的生长条件下,其羧化营养活性就很大。在0.2大气压的CO(0.17 mmol / L)下,每天每克挥发性悬浮固体的最大产甲烷活性为1 mmol CH4,然后随CO的供应量降低。中间代谢物(例如乙酸盐,H2和丙酸酯)开始在较高的CO浓度下积累。用2-溴乙烷磺酸(BES),氟乙酸盐和万古霉素进行的抑制实验表明,在混合培养物中,CO主要通过产乙酸菌转化为乙酸盐,然后通过破弹性产甲烷菌进一步转化为甲烷,而直接产甲烷的CO转化可以忽略不计。瓶中高pCO(≥1 atm)时,甲烷生成完全被阻止。但是,在污泥吸收到CO后,在100%CO气氛下有可能获得更高的产甲烷潜力。这种对高CO浓度的适应导致古细菌种群的变化,然后被利用氢的产甲烷菌占主导地位,从而能够接管醋酸破产甲烷菌,而腐殖性乙酸氧化菌(SAO)则将乙酸氧化成CO2和H2。颗粒污泥的分解对其产甲烷活性显示出负面影响,证实了乙酰碎屑产甲烷菌对CO最敏感,相反,使用颗粒污泥进一步发展从富含CO的甲烷大规模生产的优势合成气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号