首页> 外文期刊>Waste and biomass valorization >Enrichment of Mesophilic and Thermophilic Mixed Microbial Consortia for Syngas Biomethanation: The Role of Kinetic and Thermodynamic Competition
【24h】

Enrichment of Mesophilic and Thermophilic Mixed Microbial Consortia for Syngas Biomethanation: The Role of Kinetic and Thermodynamic Competition

机译:嗜温和嗜热混合微生物财团的合成气生物甲烷化的丰富:动力学和热力学竞争的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mixed culture-based syngas biomethanation is a robust bioconversion process with high versatility in terms of exploitable feedstocks and potential applications, as it could be operated independently, or coupled to anaerobic digestion systems and in-situ biogas upgrading processes. Typically, the syngas biomethanation consists in the stepwise conversion of syngas into methane through a number of catabolic routes, which may vary considerably depending on the operating conditions. In this study, two enrichments were performed at 37 degrees C and 60 degrees C to investigate the effect of the incubation temperature on the microbial selection process and the dominant catabolic routes followed. This was carried out through the characterization of the catabolic routes and the microbial composition of the enriched cultures, and a thermodynamic feasibility study on their metabolic networks. The enrichments resulted in two stable microbial consortia with different patterns of activity. The mesophilic enriched consortium presented a more intricate metabolic network composed by four microbial trophic groups, where aceticlastic methanogenesis contributed to 64.9 +/- 8.3% of the CH4 production. The metabolic network of the thermophilic enriched consortium was much simpler, consisting in the syntrophic association of carboxydotrophic hydrogenogens and hydrogenotrophic methanogens. This led to significant differences in methane productivity, corresponding to 1.83 +/- 0.27 and 33.48 +/- 0.90 mmol CH4/g VSS/h for the mesophilic and the thermophilic enriched consortium, respectively, which would potentially make the thermophilic consortium more suited for industrial applications. 16S rRNA gene amplicon analysis indicated the presence of strains with similarity to Acetobacterium sp., Methanospirillum hungateii, Methanospirillum stamsii and Methanothrix sp. at mesophilic conditions, and Thermincola carboxydiphila and Methanothermobacter sp. at thermophilic conditions, implying a role in the conversion of syngas. The thermodynamic feasibility study demonstrated that the microbial selection was not driven solely by kinetic competition, since thermodynamic limitations also played a significant role defining the dominant catabolic routes.
机译:基于混合培养物的合成气生物甲烷化是一种稳健的生物转化过程,在可利用的原料和潜在应用方面具有很高的通用性,因为它可以独立运行,或与厌氧消化系统和原位沼气提纯过程结合使用。通常,合成气的生物甲烷化在于通过许多分解代谢途径将合成气逐步转化为甲烷,该途径可能根据操作条件而变化很大。在这项研究中,在37摄氏度和60摄氏度下进行了两次富集,以研究孵育温度对微生物选择过程的影响,以及随后的主要分解代谢途径。这是通过表征分解代谢途径和富集培养物的微生物组成,以及对其代谢网络进行热力学可行性研究来进行的。富集产生了具有不同活性模式的两个稳定的微生物群落。富嗜温性的财团提出了一个由四个微生物营养组组成的更复杂的代谢网络,其中回弹甲烷化作用占CH4产量的64.9 +/- 8.3%。嗜热富集财团的代谢网络要简单得多,包括羧基营养型氢和氢营养型产甲烷菌的营养结合。这导致甲烷生产率的显着差异,分别对应于嗜温和嗜热的财团分别为1.83 +/- 0.27和33.48 +/- 0.90 mmol CH4 / g VSS / h,这可能会使嗜热的财团更适合工业应用。 16S rRNA基因扩增子分析表明菌株与醋杆菌,汉斯甲烷螺旋杆菌,斯塔曼甲烷螺旋菌和甲烷菌属相似。在嗜温条件下,Thermincola carboxydiphila和Methanothermobacter sp.。在高温条件下,暗示着合成气的转化。热力学可行性研究表明,微生物的选择并非仅由动力学竞争驱动,因为热力学的局限性在确定主要分解代谢途径方面也起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号