首页> 外文期刊>Applied Energy >Detection of cleaning interventions on photovoltaic modules with machine learning
【24h】

Detection of cleaning interventions on photovoltaic modules with machine learning

机译:通过机器学习检测光伏组件的清洁干预措施

获取原文
获取原文并翻译 | 示例

摘要

Soiling losses are a major concern for remote power systems that rely on photovoltaic energy. Power loss analysis is efficient for the monitoring of large power plants and for developing an optimal cleaning schedule, but it is not adapted for remote monitoring of standalone photovoltaic systems that are used in rural and poor regions. Indeed, this technique relies on a costly and dirt sensitive irradiance sensor. This paper investigates the possibility of a low-cost monitoring of cleaning interventions on photovoltaic modules during daytime. We believe that it can be helpful to know whether the soiling is regularly removed or not, and to decide if it is necessary to carry out additional cleaning operations. The problem is formulated as a classification task to automatically identify the occurrence of a cleaning intervention using a time window of temperature, voltage and current measurements of a photovoltaic array. We investigate machine learning tools based on Logistic Regression, Support Vector Machines, Artificial Neural Networks and Random Forest to achieve such classification task. In addition, we study the influence of the temporal resolution of the signals and the feature extraction on the classification performance. The experiments are conducted on a real dataset and show promising results with classification accuracy of up to 95%. Based on the results, three implementation strategies addressing different practical needs are proposed. The results may be particularly useful for non-governmental organizations, governments and energy service companies to improve the maintenance level of their photovoltaic facilities.
机译:对于依赖光伏能源的远程电源系统而言,污损是一个主要问题。功率损耗分析对于监视大型发电厂和制定最佳清洁时间表非常有效,但不适用于对农村和贫困地区使用的独立光伏系统进行远程监视。实际上,该技术依赖于昂贵且对灰尘敏感的辐照度传感器。本文研究了在白天低成本监控光伏组件清洁干预措施的可能性。我们相信了解是否定期清除污物并决定是否有必要进行额外的清洁操作会有所帮助。将该问题表述为分类任务,以使用光伏阵列的温度,电压和电流测量值的时间窗口自动识别清洁干预的发生。我们研究基于Logistic回归,支持向量机,人工神经网络和随机森林的机器学习工具,以实现此类分类任务。此外,我们研究了信号的时间分辨率和特征提取对分类性能的影响。实验是在真实的数据集上进行的,并显示出令人鼓舞的结果,分类精度高达95%。基于结果,提出了针对不同实际需求的三种实施策略。该结果对于非政府组织,政府和能源服务公司提高其光伏设施的维护水平可能特别有用。

著录项

  • 来源
    《Applied Energy》 |2020年第1期|114642.1-114642.12|共12页
  • 作者

  • 作者单位

    IFSTTAR COSYS GRETTIA 14-20 Blvd Newton F-77420 Champs Sur Marne France;

    Univ Paris Saclay Grp Elect Engn Paris CNRS CentraleSupelec F-91192 Gif Sur Yvette France|Sorbonne Univ Grp Elect Engn Paris CNRS F-75252 Paris France;

    Univ Rennes 1 ENS Rennes SATIE F-35170 Bruz France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Photovoltaics; Soiling; Monitoring; Maintenance; Machine learning; Detection;

    机译:光伏;弄脏;监控;保养;机器学习;侦测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号