首页> 外文期刊>Applied computational intelligence and soft computing >Subspace Clustering of High-Dimensional Data: An Evolutionary Approach
【24h】

Subspace Clustering of High-Dimensional Data: An Evolutionary Approach

机译:高维数据的子空间聚类:一种进化方法

获取原文
获取原文并翻译 | 示例

摘要

Clustering high-dimensional data has been a major challenge due to the inherent sparsity of the points. Most existing clustering algorithms become substantially inefficient if the required similarity measure is computed between data points in the full-dimensional space. In this paper, we have presented a robust multi objective subspace clustering (MOSCL) algorithm for the challenging problem of high-dimensional clustering. The first phase of MOSCL performs subspace relevance analysis by detecting dense and sparse regions with their locations in data set. After detection of dense regions it eliminates outliers. MOSCL discovers subspaces in dense regions of data set and produces subspace clusters. In thorough experiments on synthetic and real-world data sets, we demonstrate that MOSCL for subspace clustering is superior to PROCLUS clustering algorithm. Additionally we investigate the effects of first phase for detecting dense regions on the results of subspace clustering. Our results indicate that removing outliers improves the accuracy of subspace clustering. The clustering results are validated by clustering error (CE) distance on various data sets. MOSCL can discover the clusters in all subspaces with high quality, and the efficiency of MOSCL outperforms PROCLUS.
机译:由于点固有的稀疏性,对高维数据进行聚类已成为一个主要挑战。如果在多维空间中的数据点之间计算所需的相似性度量,则大多数现有的聚类算法将变得效率低下。在本文中,我们针对高维聚类的挑战性问题提出了一种健壮的多目标子空间聚类(MOSCL)算法。 MOSCL的第一阶段通过检测密集和稀疏区域及其在数据集中的位置来执行子空间相关性分析。在检测到密集区域后,它将消除异常值。 MOSCL在数据集的密集区域中发现子空间,并产生子空间簇。在综合和真实数据集的全面实验中,我们证明了用于子空间聚类的MOSCL优于PROCLUS聚类算法。此外,我们调查了第一阶段检测密集区域对子空间聚类结果的影响。我们的结果表明,消除异常值可以提高子空间聚类的准确性。聚类结果通过各种数据集上的聚类误差(CE)距离进行验证。 MOSCL可以高质量发现所有子空间中的集群,并且MOSCL的效率优于PROCLUS。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2013年第2013期|863146.1-863146.12|共12页
  • 作者

    Singh Vijendra; Sahoo Laxman;

  • 作者单位

    Department of Computer Science and Engineering, Faculty of Engineering and Technology, Mody Institute of Technology and Science, Lakshmangarh, Rajasthan 332311, India;

    School of Computer Engineering, KIIT University, Bhubaneswar 751024, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号