首页> 外文期刊>Applied computational intelligence and soft computing >Stateless Malware Packet Detection by Incorporating Naive Bayes with Known Malware Signatures
【24h】

Stateless Malware Packet Detection by Incorporating Naive Bayes with Known Malware Signatures

机译:通过将朴素贝叶斯与已知恶意软件签名相结合来进行无状态恶意软件包检测

获取原文
获取原文并翻译 | 示例

摘要

Malware detection done at the network infrastructure level is still an open research problem ,considering the evolution of malwares and high detection accuracy needed to detect these threats. Content based classification techniques have been proven capable of detecting malware without matching for malware signatures. However, the performance of the classification techniques depends on observed training samples. In this paper, a new detection method that incorporates Snort malware signatures into Naive Bayes model training is proposed. Through experimental work, we prove that the proposed work results in low features search space for effective detection at the packet level. This paper also demonstrates the viability of detecting malware at the stateless level (using packets) as well as at the stateful level (using TCP byte stream). The result shows that it is feasible to detect malware at the stateless level with similar accuracy to the stateful level, thus requiring minimal resource for implementation on middleboxes. Stateless detection can give a better protection to end users by detecting malware on middleboxes without having to reconstruct stateful sessions and before malwares reach the end users.
机译:在网络基础架构级别进行恶意软件检测仍然是一个开放的研究问题,考虑了恶意软件的发展以及检测这些威胁所需的高检测精度。基于内容的分类技术已被证明能够检测恶意软件而无需匹配恶意软件签名。但是,分类技术的性能取决于观察到的训练样本。本文提出了一种将Snort恶意软件签名合并到朴素贝叶斯模型训练中的新检测方法。通过实验工作,我们证明了提出的工作导致了低特征搜索空间,从而可以在数据包级别进行有效检测。本文还演示了在无状态级别(使用数据包)和有状态级别(使用TCP字节流)检测恶意软件的可行性。结果表明,以与有状态级别相似的准确性在无状态级别检测恶意软件是可行的,因此只需要最少的资源即可在中间盒上实施。无状态检测可以通过检测中间盒上的恶意软件,而不必重建有状态会话,并且在恶意软件到达最终用户之前,可以为最终用户提供更好的保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号