首页> 外文期刊>Applied computational intelligence and soft computing >Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems
【24h】

Multivariate Statistics and Supervised Learning for Predictive Detection of Unintentional Islanding in Grid-Tied Solar PV Systems

机译:网格统计太阳能光伏系统中无意孤岛的预测检测的多元统计和监督学习

获取原文
获取原文并翻译 | 示例

摘要

Integration of solar photovoltaic (PV) generation with power distribution networks leads to many operational challenges and complexities. Unintentional islanding is one of them which is of rising concern given the steady increase in grid-connected PV power. This paper builds up on an exploratory study of unintentional islanding on a modeled radial feeder having large PV penetration. Dynamic simulations, also run in real time, resulted in exploration of unique potential causes of creation of accidental islands. The resulting voltage and current data underwent dimensionality reduction using principal component analysis (PCA) which formed the basis for the application of Q statistic control charts for detecting the anomalous currents that could island the system. For reducing the false alarm rate of anomaly detection, Kullback-Leibler (K-L) divergence was applied on the principal component projections which concluded that Q statistic based approach alone is not reliable for detection of the symptoms liable to cause unintentional islanding. The obtained data was labeled and a K-nearest neighbor (K-NN) binomial classifier was then trained for identification and classification of potential islanding precursors from other power system transients. The three-phase short-circuit fault case was successfully identified as statistically different from islanding symptoms.
机译:太阳能光伏(PV)发电与配电网络的集成带来了许多运营挑战和复杂性。考虑到并网光伏发电的稳定增长,无意孤岛是其中之一。本文建立在对具有较大PV穿透力的模型径向给料机上的无意孤岛的探索性研究的基础上。动态仿真也实时运行,从而探索了造成意外岛的独特潜在原因。使用主成分分析(PCA)对所得的电压和电流数据进行了降维处理,这为应用Q统计控制图来检测可能存在于系统中的异常电流奠定了基础。为了降低异常检测的误报率,对主成分预测应用了Kullback-Leibler(K-L)散度,得出的结论是,仅基于Q统计量的方法对于检测可能导致无意孤岛的症状并不可靠。标记获得的数据,然后训练K最近邻(K-NN)二项式分类器,以识别和分类来自其他电力系统瞬变的潜在孤岛前兆。三相短路故障案例已成功确定为与孤岛症状在统计上有所不同。

著录项

  • 来源
  • 作者单位

    Centre for Energy and Environment, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India;

    Centre for Energy and Environment, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India;

    Department of Electrical and Computer Engineering, North Dakota State University, 1340 Administration Avenue, Fargo, ND 58102, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号