首页> 外文期刊>Applied computational intelligence and soft computing >Sliding Window Based Machine Learning System for the Left Ventricle Localization in MR Cardiac Images
【24h】

Sliding Window Based Machine Learning System for the Left Ventricle Localization in MR Cardiac Images

机译:基于滑动窗口的机器学习系统,用于MR心脏图像中的左心室定位

获取原文
获取原文并翻译 | 示例

摘要

The most commonly encountered problem in vision systems includes its capability to suffice for different scenes containing the object of interest to be detected. Generally, the different backgrounds in which the objects of interest are contained significantly dwindle the performance of vision systems. In this work, we design a sliding windows machine learning system for the recognition and detection of left ventricles in MR cardiac images. We leverage on the capability of artificial neural networks to cope with some of the inevitable scene constraints encountered in medical objects detection tasks. We train a backpropagation neural network on samples of left and nonleft ventricles. We reformulate the left ventricles detection task as a machine learning problem and employ an intelligent system (backpropagation neural network) to achieve the detection task. We treat the left ventricle detection problem as binary classification tasks by assigning collected left ventricle samples as one class, and random (nonleft ventricles) objects are the other class. The trained backpropagation neural network is validated to possess a good generalization power by simulating it with a test set. A recognition rate of 100% and 88% is achieved on the training and test set, respectively. The trained backpropagation neural network is used to determine if the sampled region in a target image contains a left ventricle or not. Lastly, we show the effectiveness of the proposed system by comparing the manual detection of left ventricles drawn by medical experts and the automatic detection by the trained network.
机译:视觉系统中最常遇到的问题包括其足以满足包含要检测的感兴趣对象的不同场景的能力。通常,包含感兴趣对象的不同背景会大大降低视觉系统的性能。在这项工作中,我们设计了一个滑动窗口机器学习系统,用于识别和检测MR心脏图像中的左心室。我们利用人工神经网络的能力来应对医疗对象检测任务中不可避免的场景约束。我们在左心室和非左心室的样本上训练反向传播神经网络。我们将左心室检测任务重新定义为机器学习问题,并采用智能系统(反向传播神经网络)来完成检测任务。通过将收集的左心室样本分配为一类,而将随机(非左心室)对象分配为另一类,我们将左心室检测问题视为二元分类任务。通过使用测试集进行仿真,可以验证训练有素的反向传播神经网络具有良好的泛化能力。在训练和测试集上的识别率分别达到100%和88%。训练后的反向传播神经网络用于确定目标图像中的采样区域是否包含左心室。最后,我们通过比较医学专家绘制的左心室的手动检测和受过训练的网络的自动检测来显示所提出系统的有效性。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2017年第2017期|3048181.1-3048181.9|共9页
  • 作者单位

    Department of Biomedical Engineering, Near East University, Near East Boulevard, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey;

    Department of Biomedical Engineering, Near East University, Near East Boulevard, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号