首页> 外文期刊>Applied Computational Electromagnetics Society journal >A Model-Based Technique with ℓ_1 Minimization for Defect Detection and RCS Interpolation from Limited Data
【24h】

A Model-Based Technique with ℓ_1 Minimization for Defect Detection and RCS Interpolation from Limited Data

机译:一种基于ℓ_1最小化的基于模型的技术,用于从受限数据中进行缺陷检测和RCS插值

获取原文
获取原文并翻译 | 示例

摘要

Method of moments (MoM) codes have become increasingly capable and accurate for predicting the radiation and scattering from structures with dimensions up to several tens of wavelengths. In an earlier work, we presented a network model (NM) algorithm that uses a Gauss-Newton iterative nonlinear estimation method in conjunction with a CARLOS-3DTM MoM model to estimate the "as-built" materials parameters of a target from a set of backscatter measurements. In this paper, we demonstrate how the NM algorithm, combined with the basis pursuits (BP) ℓ_1 minimization technique, can be used to locate unknown defects (dents, cracks, etc.) on a target from a limited set of RCS pattern measurements. The advantage of ℓ_1 minimization techniques such as BP is that they are capable of finding sparse solutions to underdetermined problems. As such, they reduce the requirement for a priori information regarding the location of the defects and do not require Nyquist sampling of the input pattern measurements. We will also show how the BP solutions can be used to interpolate RCS pattern data that is undersampled or has gaps.
机译:矩量法(MoM)代码已变得越来越有能力和准确地用于预测尺寸高达数十个波长的结构的辐射和散射。在较早的工作中,我们提出了一种网络模型(NM)算法,该算法将高斯-牛顿迭代非线性估计方法与CARLOS-3DTM MoM模型结合使用,以从一组目标中估计目标的“已建成”材料参数。反向散射测量。在本文中,我们演示了如何将NM算法与基本追踪(BP)ℓ_1最小化技术相结合,用于从一组有限的RCS模式测量结果中定位目标上的未知缺陷(凹痕,裂缝等)。 ℓ_1最小化技术(例如BP)的优点在于,它们能够找到不确定问题的稀疏解。这样,它们减少了关于缺陷位置的先验信息的需求,并且不需要输入图案测量的奈奎斯特采样。我们还将展示BP解决方案如何用于对欠采样或有间隙的RCS模式数据进行插值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号