首页> 外文期刊>Applied Artificial Intelligence >General Learning Equilibrium Optimizer: A New Feature Selection Method for Biological Data Classification
【24h】

General Learning Equilibrium Optimizer: A New Feature Selection Method for Biological Data Classification

机译:一般学习均衡优化器:生物数据分类的新特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Finding relevant information from biological data is a critical issue for the study of disease diagnosis, especially when an enormous number of biological features are involved. Intentionally, the feature selection can be an imperative preprocessing step before the classification stage. Equilibrium optimizer (EO) is a recently established metaheuristic algorithm inspired by the principle of dynamic source and sink models when measuring the equilibrium states. In this research, a new variant of EO called general learning equilibrium optimizer (GLEO) is proposed as a wrapper feature selection method. This approach adopts a general learning strategy to help the particles to evade the local areas and improve the capability of finding promising regions. The proposed GLEO aims to identify a subset of informative biological features among a large number of attributes. The performance of the GLEO algorithm is validated on 16 biological datasets, where nine of them represent high dimensionality with a smaller number of instances. The results obtained show the excellent performance of GLEO in terms of fitness value, accuracy, and feature size in comparison with other metaheuristic algorithms.
机译:从生物数据中查找相关信息是疾病诊断研究的关键问题,特别是当涉及巨大数量的生物学特征时。有意地,特征选择可以是分类阶段之前的必要预处理步骤。均衡优化器(EO)是最近建立了由动态源和水槽型号测量均衡状态时的原理启发的成熟的成群质算法。在该研究中,提出了一种名为通用学习均衡优化器(GLEO)的EO的新变种作为包装特征选择方法。这种方法采用一般学习策略来帮助粒子逃避当地地区并提高寻找有前途区域的能力。建议的GLEO旨在确定大量属性中的信息化生物学特征的子集。 GLEO算法的性能在16个生物数据集上验证,其中九个表示具有较少数量的实例的高维度。与其他成式算法相比,所获得的结果显示了在适应性值,准确性和特征尺寸方面的优异性能。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2021年第4期|247-263|共17页
  • 作者单位

    Univ Tekn Malaysia Melaka Fac Elect Engn Melaka Malaysia;

    Torrens Univ Australia Ctr Artificial Intelligence Res & Optimizat Brisbane Qld Australia|Yonsei Univ YFL Yonsei Frontier Lab Seoul South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号