首页> 外文期刊>Applied Artificial Intelligence >An Effective Approach for Noise Robust and Rotation Invariant Handwritten Character Recognition Using Zernike Moments Features and Optimal Similarity Measure
【24h】

An Effective Approach for Noise Robust and Rotation Invariant Handwritten Character Recognition Using Zernike Moments Features and Optimal Similarity Measure

机译:使用Zernike Moments特征和最佳相似度量的噪声鲁棒和旋转不变手写字符识别的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Zernike moments (ZMs) are very effective orthogonal rotation invariant moments. Conventionally, the magnitudes of ZMs are used as feature descriptors and the Euclidean distance is used as a classifier. Recently, a few classifiers based on ZM magnitude and phase have been developed which are reported to be very effective in pattern matching problems. One such a recently developed similarity measure, known as optimal similarity measure, is known to provide very good performance over the ZM magnitude-based Euclidean distance measure in pattern recognition problems, especially under noisy conditions. In this paper, we investigate the conventional magnitude-based similarity measure and the new similarity measures including the optimal similarity measure and compare their performance on segmented handwritten characters and numerals. It is observed that the performance of optimal similarity measure is far better than all other similarity measures. Its performance is very much better than other similarity measures even under very high noisy condition. However, it is slow owing to the optimization of the process involved in its computation. Therefore, we also propose a fast algorithm for its computation and reduce its time complexity. Detailed experimental results are provided to support the above observations.
机译:Zernike Moments(ZMS)是非常有效的正交旋转不变矩。传统上,ZMS的大小用作特征描述符,并且欧几里德距离用作分类器。最近,已经开发出基于ZM幅度和阶段的一些分类器,其据报道,在模式匹配问题中非常有效。已知一种被称为最佳相似性度量的这种最近开发的相似度量,以提供在模式识别问题中的ZM幅度的欧几里德距离测量上的非常好的性能,尤其是在嘈杂的条件下。在本文中,我们调查了传统的基于幅度的相似度量和新的相似度措施,包括最佳相似度测量,并将它们的性能与分段的手写字符和数字进行比较。观察到,最佳相似度测量的性能远远优于所有其他相似度措施。即使在非常高的嘈杂情况下,它的性能也比其他相似度措施更好。然而,由于对其计算所涉及的过程的优化来说,它很慢。因此,我们还提出了一种快速算法,以实现其计算并降低其时间复杂性。提供了详细的实验结果以支持上述观察结果。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2020年第14期|1011-1037|共27页
  • 作者单位

    Punjabi Univ Dept Comp Sci Patiala 147002 Punjab India;

    Punjabi Univ Dept Comp Sci Patiala 147002 Punjab India|Thapar Inst Engn & Technol Dept Comp Sci & Engn Patiala Punjab India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号