首页> 外文期刊>Applied Artificial Intelligence >A Comparative Study of Nature-Inspired Metaheuristic Algorithms in Search of Near-to-optimal Golomb Rulers for the FWM Crosstalk Elimination in WDM Systems
【24h】

A Comparative Study of Nature-Inspired Metaheuristic Algorithms in Search of Near-to-optimal Golomb Rulers for the FWM Crosstalk Elimination in WDM Systems

机译:自然启发型血管算法的比较研究,寻求WDM系统FWM串扰消除FWM串扰的近乎最优戈尔族统治者

获取原文

摘要

Nowadays, nature-inspired metaheuristic algorithms are the most powerful optimizing algorithms for solving NP-complete problems. This paper proposes five recent approaches to find near-optimal Golomb ruler (OGR) sequences based on nature-inspired algorithms in a reasonable time. The optimal Golomb ruler sequences found their application in channel-allocation method that allows suppression of the crosstalk due to four-wave mixing (FWM) in optical wavelength division multiplexing (WDM) systems. The simulation results conclude that the proposed nature-inspired metaheuristic optimization algorithms are superior to the existing conventional computing algorithms, i.e., Extended Quadratic Congruence (EQC) and Search algorithm (SA) and nature-inspired algorithms, i.e., Genetic algorithms (GAs), Biogeography-based optimization (BBO) and simple Big bang-Big crunch (BB-BC) optimization algorithm to find near-OGRs in terms of ruler length, total optical channel bandwidth and computation time.
机译:如今,自然灵感的沟培算法是用于解决NP完整问题的最强大的优化算法。本文提出了最近的五种方法,以便在合理的时间内基于自然启发算法找到近最佳的戈尔仑统治者(OGR)序列。最佳戈尔仑尺序列发现它们在通道分配方法中的应用,其允许由于光波分复用(WDM)系统中的四波混合(FWM)而抑制串扰。仿真结果得出结论,提出的自然启发的成逐优化算法优于现有的传统计算算法,即扩展二次等同集(EQC)和搜索算法(SA)和自然启发算法,即遗传算法(天然气),基于生物地理的优化(BBO)和简单的大爆炸(BB-BC)优化算法在尺寸,总光通道带宽和计算时间方面找到近OGR。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2019年第14期|1199-1265|共67页
  • 作者

    Bansal Shonak;

  • 作者单位

    Punjab Engn Coll Elect & Commun Engn Dept Sect 12 Chandigarh India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号