首页> 外文期刊>Applied Artificial Intelligence >Modeling Incomplete Knowledge of Semantic Web Using Bayesian Networks
【24h】

Modeling Incomplete Knowledge of Semantic Web Using Bayesian Networks

机译:使用贝叶斯网络建模语义网的不完全知识

获取原文
获取原文并翻译 | 示例

摘要

Interoperable ontologies already exist in the biomedical field, enabling scientists to communicate with minimum ambiguity. Unfortunately, ontology languages, in the semantic web, such as OWL and RDF(S), are based on crisp logic and thus they cannot handle uncertain knowledge about an application field, which is unsuitable for the medical domain. In this paper, we focus on modeling incomplete knowledge in the classical OWL ontologies, using Bayesian networks, all keeping the semantic of the first ontology, and applying algorithms dedicated to learn parameters of Bayesian networks in order to generate the Bayesian networks. We use EM algorithm for learning conditional probability tables of different nodes of Bayesian network automatically, contrary to different tools of Bayesian networks where probabilities are inserted manually. To validate our work, we have applied our model on the diagnosis of liver cancer using classical ontology containing incomplete instances, in order to handle medical uncertain knowledge, for predicting a liver cancer.
机译:生物医学领域已经存在可互操作的本体,使科学家能够以最小的歧义进行交流。不幸的是,语义网中的本体语言(例如OWL和RDF(S))基于清晰的逻辑,因此它们无法处理有关应用领域的不确定知识,这不适用于医学领域。在本文中,我们专注于使用经典贝叶斯网络对经典OWL本体中的不完全知识进行建模,并保留第一个本体的语义,并应用专用于学习贝叶斯网络参数的算法以生成贝叶斯网络。我们使用EM算法自动学习贝叶斯网络不同节点的条件概率表,这与人工插入概率的贝叶斯网络不同工具相反。为了验证我们的工作,我们已使用包含不完整实例的经典本体将模型应用于肝癌的诊断,以便处理医学上不确定的知识,从而预测肝癌。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2019年第11期|1022-1034|共13页
  • 作者

    Fareh Messaouda;

  • 作者单位

    Univ Blida1 Fac Sci Dept Comp Sci LRDSI Lab Blida Algeria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号