首页> 外文期刊>Applied Artificial Intelligence >ARTIFICIAL INTELLIGENCE AND GRAPH THEORY TOOLS FOR DESCRIBING SWITCHED LINEAR CONTROL SYSTEMS
【24h】

ARTIFICIAL INTELLIGENCE AND GRAPH THEORY TOOLS FOR DESCRIBING SWITCHED LINEAR CONTROL SYSTEMS

机译:用于描述开关线性控制系统的人工智能和图形理论工具

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a representation of multi-model based controllers using artificial intelligence techniques. These techniques will be graph theory, neural networks, genetic algorithms, and fuzzy logic. Thus, graph theory is used to describe in a formal and concise way the switching mechanism between the various plant parameterizations of the switched system. Moreover, the interpretation of multi-model controllers in an artificial intelligence frame will allow the application of each specific technique to the design of improved multi-model based controllers. The obtained artificial intelligence-based multi-model controllers are compared with classic single model-based ones. It is shown through simulation examples that a transient response improvement can be achieved by using multi-estimation based techniques. Furthermore, a method for synthesizing multi-model-based neural network controllers from already designed single model-based ones is presented, extending the applicability of this kind of technique to a more general type of controller. Also, some applications of genetic algorithms and fuzzy logic to multi-model controller design are proposed. In particular, the mutation operation from genetic algorithms inspires a robustness test, which consists of a random modification of the estimates which is used to select the one leading to the better identification performance towards parameterizing online the adaptive controller. Such a test is useful for plants operating in a noisy environment. The proposed robustness test improves the selection of the plant model used to parameterize the adaptive controller in comparison to classic multi-model schemes where the controller parameterization choice is basically taken based on the identification accuracy of each model. Moreover, the fuzzy logic approach suggests new ideas to the design of multi-estimation structures, which can be applied to a broad variety of adaptive controllers such as robotic manipulator controller design.
机译:本文使用人工智能技术开发了基于多模型的控制器的表示形式。这些技术将是图论,神经网络,遗传算法和模糊逻辑。因此,使用图论以一种形式简洁的方式来描述交换系统的各种工厂参数之间的交换机制。此外,在人工智能框架中对多模型控制器的解释将允许将每种特定技术应用于改进的基于多模型的控制器的设计。将获得的基于人工智能的多模型控制器与经典的基于单模型的控制器进行比较。通过仿真示例显示,可以通过使用基于多估计的技术来实现瞬态响应的改善。此外,提出了一种从已经设计的基于单模型的控制器中综合基于多模型的神经网络控制器的方法,从而将这种技术的适用性扩展到了更通用的控制器类型。同时,提出了遗传算法和模糊逻辑在多模型控制器设计中的一些应用。特别是,遗传算法的变异操作激发了鲁棒性测试,该测试由对估计值的随机修改组成,该估计值用于选择一个参数,从而导致更好的识别性能,从而在线对自适应控制器进行参数化。这种测试对于在嘈杂环境中运行的工厂很有用。与经典的多模型方案相比,所提出的鲁棒性测试改进了用于参数化自适应控制器的工厂模型的选择,在经典的多模型方案中,控制器参数化的选择基本上是基于每个模型的识别精度来进行的。此外,模糊逻辑方法为多重估计结构的设计提出了新思路,可以将其应用于各种各样的自适应控制器,例如机器人操纵器控制器设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号