首页> 外文期刊>Applied Artificial Intelligence >VERIFICATION OF DISTRIBUTED FIREWALLS CONFIGURATION VS. SECURITY POLICIES USING ALCQI(D)
【24h】

VERIFICATION OF DISTRIBUTED FIREWALLS CONFIGURATION VS. SECURITY POLICIES USING ALCQI(D)

机译:分布式防火墙配置的验证VS.使用ALCQI(D)的安全策略

获取原文
获取原文并翻译 | 示例

摘要

Packet filtering firewalls have an important role in providing security in IP networks which control the traversal of packets across the boundaries of a secured network based on a specific security policy. Manual configuring of packet filtering firewalls can be extremely complex and error-prone. Therefore, it can be performed in an improper way which is not in conformance with security policies. So, we need an approach to analyze the configuration of whole packet-filtering firewalls in the network in order to discover all policy violations. In this article, we introduce an approach based on description logics to verify the configuration of all the firewalls in a network universally vs. security policies. Using this approach, system managers can express and analyze security policies with a formal and simple language. This high-level language is extensible and topology-independent. In this approach, we first automatically transform high-level security policies into low-level policies, i.e., filtering rules. Then we develop an algorithm to discover policy violations which takes configuration of the firewalls, network topology, routing information, and low-level security policies as input and determines existing policy violations as output.
机译:数据包过滤防火墙在提供IP网络安全性方面起着重要作用,IP网络根据特定的安全策略控制数据包在安全网络的边界上的遍历。手动配置数据包筛选防火墙可能非常复杂且容易出错。因此,它可能以不符合安全策略的不正确方式执行。因此,我们需要一种方法来分析网络中整个数据包筛选防火墙的配置,以便发现所有违反策略的情况。在本文中,我们介绍一种基于描述逻辑的方法,以相对于安全策略来普遍验证网络中所有防火墙的配置。使用这种方法,系统管理员可以使用正式和简单的语言来表达和分析安全策略。这种高级语言是可扩展的,并且与拓扑无关。通过这种方法,我们首先自动将高级安全策略转换为低级策略,即过滤规则。然后,我们开发一种算法来发现策略违规,该算法以防火墙,网络拓扑,路由信息和低级安全策略的配置作为输入,并确定现有策略违规作为输出。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2009年第10期|945-975|共31页
  • 作者

    Narges Khakpour; Saeed Jalili;

  • 作者单位

    Symbolic Machine-Learning Laboratory, School of Electrical and Computer Engineering,Tarbiat Modares University, Tehran, Iran;

    Symbolic Machine-Learning Laboratory, School of Electrical and Computer Engineering, Tarbiat Modares University, Jalal Ale Ahmad Highway,P.O. Box 1411713116, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号