首页> 外文期刊>Applied Artificial Intelligence >HYBRID GENETIC PROGRAMMING-BASED SEARCH ALGORITHMS FOR ENTERPRISE BANKRUPTCY PREDICTION
【24h】

HYBRID GENETIC PROGRAMMING-BASED SEARCH ALGORITHMS FOR ENTERPRISE BANKRUPTCY PREDICTION

机译:基于混合遗传程序的企业破产预测搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Bankruptcy is an extremely significant worldwide problem that affects the economic well- being of all countries. The high social costs incurred by various stakeholders associated with bankrupt firms imply the need to search for better theoretical understanding and prediction quality. The main objective of this paper is to apply genetic programming with orthogonal least squares (GP/ OLS) and with simulated annealing (GP/SA) algorithms to build models for bankruptcy prediction. Utilizing the hybrid GP/OLS and GP/SA techniques, generalized relationships are obtained to classify samples of 136 bankrupt and nonbankrupt Iranian corporations based on financial ratios. Another important contribution of this paper is to identify the effective predictive financial ratios based on an extensive bankruptcy prediction literature review and a sequential feature selection (SFS) analysis. A comparative study on the classification accuracy of the GP/OLS- and GP/ SA-based models is also conducted. The observed agreement between the predictions and the actual values indicates that the proposed models effectively estimate any enterprise with regard to the aspect of bankruptcy. According to the results, the proposed GP/SA model has better performance than the GP/ OLS model in bankruptcy prediction.
机译:破产是一个非常重大的世界性问题,它影响到所有国家的经济状况。与破产公司有关的各种利益相关者承担的高社会成本意味着需要寻求更好的理论理解和预测质量。本文的主要目的是将遗传规划与正交最小二乘(GP / OLS)和模拟退火(GP / SA)算法一起应用,以建立破产预测模型。利用混合GP / OLS和GP / SA技术,可以基于财务比率获得广义关系来对136家破产和未破产的伊朗公司的样本进行分类。本文的另一个重要贡献是基于广泛的破产预测文献综述和顺序特征选择(SFS)分析来确定有效的预测财务比率。还对基于GP / OLS和GP / SA的模型的分类准确性进行了比较研究。观察到的预测值与实际值之间的一致性表明,所提出的模型可以有效地估计任何企业的破产情况。根据结果​​,提出的GP / SA模型在破产预测方面比GP / OLS模型具有更好的性能。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2011年第10期|p.669-692|共24页
  • 作者单位

    Faculty of Management and Accounting, Allameh Tabatabai University, Valiasr St., Tehran 6479-14155, Iran;

    rnTehran Municipality's Beautification Organization, Tehran, Iran;

    College of Civil Engineering, Tafresh University, Tafresh, Iran;

    Faculty of Management and Accounting, Allameh Tabatabaei University, Tehran, Iran;

    School of Mathematics, Iran University of Science and Technology, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号