首页> 外文期刊>Applied Artificial Intelligence >SELECTION OF NUMERICAL AND NOMINAL FEATURES BASED ON PROBABILISTIC DEPENDENCE BETWEEN FEATURES
【24h】

SELECTION OF NUMERICAL AND NOMINAL FEATURES BASED ON PROBABILISTIC DEPENDENCE BETWEEN FEATURES

机译:基于特征之间的概率相关性的数值和名义特征选择

获取原文
获取原文并翻译 | 示例

摘要

Data classification tasks often concern objects described by tens or even hundreds of features. Classification of such high-dimensional data is a difficult computational problem. Feature selection techniques help reduce the number of computations and improve classification accuracy. In Michalak and Kwasnicka (2006a, b) we proposed a feature selection strategy that selects features in an individual or pairwise manner based on the assessed level of dependence between features. In the case of numerical features, this level of dependence can be expressed numerically using linear correlation coefficients. In this paper, the feature selection problem is addressed in the case of a mixture of nominal and numerical features. The feature similarity measure used in this case is based on the probabilistic dependence between features. This similarity function is used in an iterative feature selection procedure, which we proposed for selecting features prior to classification. Experiments prove that using the probabilistic dependence similarity function along with the presented feature selection procedure can improve computation speed while preserving classification accuracy in the case of mixed nominal and numerical features.
机译:数据分类任务通常涉及由数十个甚至数百个特征描述的对象。这种高维数据的分类是一个困难的计算问题。特征选择技术有助于减少计算次数并提高分类准确性。在Michalak和Kwasnicka(2006a,b)中,我们提出了一种特征选择策略,该策略根据评估的特征之间的依赖程度,以单个或成对的方式选择特征。在数字特征的情况下,可以使用线性相关系数以数字形式表示这种依赖性。在本文中,特征选择问题在名义特征和数字特征混合的情况下得以解决。在这种情况下使用的特征相似性度量基于特征之间的概率依赖性。在迭代特征选择过程中使用了这种相似性函数,我们建议在分类之前选择特征。实验证明,在标称和数值特征混合的情况下,将概率依赖相似度函数与提出的特征选择过程一起使用可以提高计算速度,同时保留分类精度。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2011年第10期|p.746-767|共22页
  • 作者单位

    Wroclaw University of Economics, Institute of Business Informatics, Komandorska 118/120, 53-345, Wroclaw, Poland;

    rnWroclaw University of Technology, Institute of Informatics, Wroclaw, Poland;

    rnDepartment and Clinic of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland;

    rnDepartment and Clinic of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号