首页> 外文期刊>Applied Artificial Intelligence >Multimodal Scene Understanding Framework and Its Application to Cooking Recognition
【24h】

Multimodal Scene Understanding Framework and Its Application to Cooking Recognition

机译:多模式场景理解框架及其在烹饪识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a multimodal "scene understanding" framework using sensory and text information. Scene understanding is defined by extracting information such as What, When, Where, Who, Why, and How on the surrounding environment. Although scene understanding has been studied, information on why and how was not considered. We constructed a framework for extracting how information, in addition to the conventional information based on multimodality and background knowledge. This framework was applied to a cooking scene, in which how information was defined as a cooking procedure. This framework was evaluated by constructing an audio-visual multimodal cooking recognition system, utilizing recipes as background knowledge. A Convolutional Neural Network (CNN) and a Hierarchical Hidden Markov Model (HHMM) were adopted in this system. Our experiments showed the robustness of the proposed framework in noisy and/or occluded situations. An interactive cooking support system based on the proposed framework might suggest the next step for cooking procedures via human-robot communications.
机译:我们提出使用感官和文本信息的多模式“场景理解”框架。通过提取诸如周围环境中的什么,何时,何地,谁,为什么以及方式等信息来定义场景理解。尽管已经研究了场景理解,但是并未考虑有关原因和方式的信息。除了基于多模式和背景知识的常规信息之外,我们还构建了一个用于提取信息方式的框架。该框架已应用于烹饪场景,在该场景中,如何将信息定义为烹饪过程。通过构建以食谱为背景知识的视听多模式烹饪识别系统来评估此框架。该系统采用卷积神经网络(CNN)和分层隐马尔可夫模型(HHMM)。我们的实验表明,在嘈杂和/或被遮挡的情况下,所提出框架的鲁棒性。基于提议框架的交互式烹饪支持系统可能会建议通过人机通信进行烹饪程序。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2016年第3期|181-200|共20页
  • 作者单位

    Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Tokyo 152, Japan;

    Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Tokyo 152, Japan;

    Tokyo Inst Technol, Grad Sch Informat Sci & Engn, Tokyo 152, Japan|Honda Res Inst Japan Co Ltd, Saitama, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号