首页> 外文期刊>Applied Artificial Intelligence >A Novel Word-Spotting Method for Handwritten Documents Using an Optimization-Based Classifier
【24h】

A Novel Word-Spotting Method for Handwritten Documents Using an Optimization-Based Classifier

机译:基于优化的分类器用于手写文档的新单词发现方法

获取原文
获取原文并翻译 | 示例

摘要

Word spotting is the answer to the question whether the document contains the user's query word. One of the main challenges of keyword spotting at the testing stage is that some testing non-classes are not included in training classes. Hence, this paper presents a robust handwritten word-spotting method for handwritten documents using genetic programming (GP). Using this technique, a tree is created as a classifier which separates the target class (keyword) from the other classes (non-keyword). The new components of the proposed classifier include proper chromosome and new classification fitness function. The proposed chromosome was based on the relationship between features and each chromosome (tree) mapped the features to a real number. Then, a margin was obtained from the real number. To evaluate the generality of the proposed method, several experiments have been designed and implemented on three standard datasets (namely IFN/ENIT Arabic for Arabic, IFN/Farsi for Persian, and George Washington for English). The results of experiments carried out on these three datasets show that the proposed method has much higher precision and recall than previous methods
机译:单词发现是文档是否包含用户查询词的问题的答案。在测试阶段发现关键字的主要挑战之一是培训班中未包括一些非测试班。因此,本文提出了一种使用遗传程序设计(GP)的健壮的手写文档手写单词发现方法。使用此技术,将树创建为分类器,将目标类(关键字)与其他类(非关键字)分开。拟议分类器的新组成部分包括适当的染色体和新的分类适应度函数。提议的染色体基于特征之间的关系,并且每个染色体(树)将特征映射到实数。然后,从实数获得裕度。为了评估该方法的通用性,已在三个标准数据集上设计并实施了一些实验(对于阿拉伯语,分别是IFN / ENIT阿拉伯语,对于波斯语是IFN / Farsi,对于英语是George Washington)。在这三个数据集上进行的实验结果表明,该方法比以前的方法具有更高的精度和查全率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号