首页> 外文期刊>Applied and Computational Harmonic Analysis >Wavelet thresholding for recovery of active sub-signals of a composite signal from its discrete samples
【24h】

Wavelet thresholding for recovery of active sub-signals of a composite signal from its discrete samples

机译:从其离散样本中恢复复合信号的主动子信号的小波阈值

获取原文
获取原文并翻译 | 示例

摘要

The Haar function is extended to a family of minimum-supported cardinal spline-wavelets psi(m,n), with any desired polynomial order m and arbitrarily high order n of vanishing moments, for the purpose of carrying out our strategy of continuous wavelet transform (CWT) thresholding to recover all "active" sub-signals, along with their instantaneous frequencies (IFs), from a blind-source composite signal they constitute. In this regard, the commonly used "adaptive harmonic model (AHM)" for governing the composite signals is extended to the "realistic adaptive harmonic model (RAHM)" to allow the time-varying continuous phase functions of the sub-signals to be non-differentiable or to have negative derivatives in arbitrary (unknown) sub-intervals of the time-domain. The objective of this paper is to develop a rigorous theory based on spline-wavelets and CWT thresholding, along with effective methods and efficient computational schemes, to resolve the inverse problem of determining the unknown number L-t of active sub-signals of a blind-source composite signal f (t) governed by RAHM, at any time instant t in the time domain, computing its active sub-signals along with their instantaneous frequencies (IFs), and the trend function, by using only discrete samples {f(t(j))} of f , where the set {t : ... t(j) t(j+1) ...} of time instants may be non-uniformly spaced. Let Sf := S-f(;s) be a B-spline series representation of f with the normalized B-splines N-s,N-t,N-k of order s = 1 on the knot sequence t and supported on [t(k), t(s+k)) as basis functions, obtained by using the discrete samples {f (t(j))}. Let psi = psi(m,n) := M-2r((n)) be the spline-wavelet of polynomial order m = 2r - n and vanishing moment of order n, with s = n = 2r - 1, where M-2r denotes the (2r)-th order centered Cardinal B-spline (with integer knots). The CWT, W-psi, is applied to the B-splines N-s,N-t,N-k to generate a one-parameter family {B-m,B-n,B-k(.; a) = B-m,B-n,B-k(.; a) := (W psi Ns,t,k(.; a)} of basis functions. This yields a series representation Pf(.; a) := P-f,P-m,P-n,P-s(.; a) of an approximate CWT (W(psi)f )(., a) of the blind-source composite signal f, by changing the basis {N-s,N-t,N-k} of S-f to the basis family {B-m,B-n,B-k(.; a)}. Let rho(m,n) denote the maximum magnitude of the Fourier transform (FT) (psi) over cap of psi, attained at k(m,n) in the interval (0, 2 pi), on which vertical bar(psi) over cap (m,n)(omega)vertical bar 0.Then thresholding of P-f (.; a) with appropriately large order n of vanishing moments (that depends on the lower bound of the sub-signal magnitudes, upper and lower bounds of the IF, and minimum separation of the reciprocals of the IFs of the sub-signals), divides the thresholded sum P-f(.; a) into a sum of L-t "disjoint" summands for any time instant t, so that maxima estimation of the thresholded P-f(.; a) over the scale a yields the optimal scales a(l)* = a(l)*(t) for each active sub-signal f(l), from which the active sub-signals themselves are recovered simply by dividing each summand by (-i)(n)p(m,n), and the IFs phi(l)'(t) are also obtained by phi(l)'(t) = k(m,n)/a(l)*(t). The wavelets psi(m,n) = M-2r((n)) allow not only easy computation of rho(m,n) and K-m,K-n, but also simple derivation of the explicit formula of the basis family B-m,B-n,B-k(.; a) by applying the B-spline recursive formula. (C) 2020 Elsevier Inc. All rights reserved.
机译:哈尔函数扩展到家庭最小支持基数样条-小波磅的(M,N),具有消失矩的任何期望的多项式阶数m和任意高的阶数n,用于执行我们的连续小波的策略变换的目的(CWT)阈值化来恢复所有的“活性”的子信号,与他们的瞬时频率(IFS)沿,从它们构成了一个盲源复合信号。在这方面,用于管理所述复合信号中的常用的“自适应谐波模型(AHM)”扩展“求实自适应谐波模型(RAHM)”,以允许子信号的随时间变化的连续相位函数是非时域的-differentiable或具有任意(未知的)负衍生物子间隔。本文的目标是制定了严格的理论基础上花键小波和CWT阈值,以有效的方法和有效的计算方案沿,来解决确定未知数目LT盲源的活动的子信号中的逆问题通过RAHM管辖,在时域中的任何时刻t的复合信号f(t),计算其活性的子信号与他们的瞬时频率(IFS),这种趋势函数一起,通过仅使用离散样本{F(t(下f,其中集合{吨的j)条)}:...< T(j)的<吨(J + 1) - ; ...}时刻的可能非均匀地间隔开。让SF:= SF(; s)为f的B样条级数表示与归一化的B-样条顺序S取代的Ns个,NT,NK; = 1上的结序列T和支撑在[T(K),吨(S + k))的作为基函数,通过使用离散样本{F(T(j))}获得。让PSI = PSI(M,N):= M-2R((n))的是多项式阶的样条小波M = 2R - n和消失的顺序n时刻,与S< = N&LT = 2R - 如图1所示,其中,M-2R表示(2R)阶中心基数B样条(带整数节)。的CWT,W-PSI,被施加到B样条NS,NT,Nk个以产生一个参数族{家蚕,BN,BK(.;一个)=家蚕,BN,BK(.; A):= (W PSI NS,T,K(.;一个)}的基函数这产生了一系列表示PF(.;一个):= PF,PM,PN,近似CWT的PS(.;一)(W( PSI)F)(。,a)所述盲源复合信号f,通过改变基础{Ns个,NT,NK} SF到基础家庭{家蚕,BN,BK(.;一个)}。让RHO (M,N)表示傅立叶变换(FT)(PSI)的过PSI的帽的最大量值,将k达到(M,N)中的时间间隔(0,2 PI),其上竖杠(psi)的过帽(M,N)(ω-)竖线> Pf的的阈值0.Then(; a)用适当大的阶数n消失矩(即依赖于下界子信号幅度的,上界和下界的所述IF,和子信号的IF的的倒数的最小间隔)的,分阈值化的总和PF(.;一个)转换成的LT“不相交”的被加数为任何时刻t的总和,使得最大值估计ö F上的阈值化的P-F(.;一)在所述标度的产率的最佳尺度A(L)* = A(L)*(t)的每个活动的子信号f(L),从该活性子信号本身通过将每个被加数简单地回收由(-i)(N)p(M,N),以及IFS披(L)(T)= K(M,N)/ A(L) '(t)的也由岛(L)获得的' *(t)的。子波PSI(M,N)= M-2R((n))的允许不仅RHO(M,N)和Km,KN,而且基础家族的显式公式家蚕,Bn的简单推导,容易计算BK(.;一)通过将B样条递推公式。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号