首页> 外文期刊>Applied and Computational Harmonic Analysis >BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs
【24h】

BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs

机译:Branchhull:从具有已知标志的信号的谱系凸版凸双线反转

获取原文
获取原文并翻译 | 示例

摘要

We consider the bilinear inverse problem of recovering two vectors, x and w, in R-L from their entrywise product. For the case where the vectors have known signs and belong to known subspaces, we introduce the convex program BranchHull, which is posed in the natural parameter space that does not require an approximate solution or initialization in order to be stated or solved. Under the structural assumptions that x and ware members of known K and N dimensional random subspaces, we present a recovery guarantee for the noiseless case and a noisy case. In the noiseless case, we prove that the BranchHull recovers the vectors up to the inherent scaling ambiguity with high probability when L 2(K+ N). The analysis provides a precise upper bound on the coefficient for the sample complexity. In a noisy case, we show that with high probability the BranchHull is robust to small dense noise when L = Omega(K+ N). (C) 2019 Elsevier Inc. All rights reserved.
机译:我们考虑从其谱系产品中恢复两个载体,X和W的双线性逆问题。对于载体具有已知符号并且属于已知子空间的情况,我们介绍了凸面编程Branchhulh,其在不需要近似解或初始化的自然参数空间中提出,以便被说明或解决。在已知K和N维随机子空间的X和Wilter成员的结构假设下,我们为无噪声案例和嘈杂的情况提出了恢复保证。在无噪声的情况下,我们证明了分支恢复到L 2(k + n)时具有高概率的固有缩放模糊的矢量。该分析为样本复杂性提供了一个精确的上限。在一个嘈杂的情况下,我们表明,当L = Omega(k + n)时,分支Hull在小密集噪声方面是强烈的。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号