首页> 外文期刊>Applied and Computational Harmonic Analysis >Latent common manifold learning with alternating diffusion:Analysis and applications
【24h】

Latent common manifold learning with alternating diffusion:Analysis and applications

机译:具有交替扩散的潜在通用流形学习:分析与应用

获取原文
获取原文并翻译 | 示例

摘要

The analysis of data sets arising from multiple sensors has drawn significant research attention over the years. Traditional methods, including kernel-based methods, are typically incapable of capturing nonlinear geometric structures. We introduce a latent common manifold model underlying multiple sensor observations for the purpose of multimodal data fusion. A method based on alternating diffusion is presented and analyzed; we provide theoretical analysis of the method under the latent common manifold model. To exemplify the power of the proposed framework, experimental results in several applications are reported. (C) 2018 Elsevier Inc. All rights reserved.
机译:多年来,对来自多个传感器的数据集的分析引起了广泛的研究关注。传统方法(包括基于内核的方法)通常无法捕获非线性几何结构。为了多模式数据融合的目的,我们介绍了潜在的通用流形模型,该模型基于多个传感器的观测结果。提出并分析了一种基于交替扩散的方法。我们提供了潜在共同流形模型下该方法的理论分析。为了说明所提出框架的功能,报告了几种应用中的实验结果。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号