首页> 外文期刊>Applied and Computational Harmonic Analysis >Learning non-parametric basis independent models from point queries via low-rank methods
【24h】

Learning non-parametric basis independent models from point queries via low-rank methods

机译:通过低阶方法从点查询中学习非参数基础独立模型

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of learning multi-ridge functions of the form f(x) = g( Ax) from point evaluations of f. We assume that the function f is defined on an ℓ_2-ball in R~d, g is twice continuously differentiable almost everywhere, and A ∈ R~(k×d) is a rank k matrix, where k (<<) d. We propose a randomized, polynomial-complexity sampling scheme for estimating such functions. Our theoretical developments leverage recent techniques from low rank matrix recovery, which enables us to derive a polynomial time estimator of the function f along with uniform approximation guarantees. We prove that our scheme can also be applied for learning functions of the form: f(x) = ∑_(i=1)~k g_i(a_i~Tx), provided f satisfies certain smoothness conditions in a neighborhood around the origin. We also characterize the noise robustness of the scheme. Finally, we present numerical examples to illustrate the theoretical bounds in action.
机译:我们考虑从f的点评估中学习形式为f(x)= g(Ax)的多岭函数的问题。我们假设函数f是在R〜d中的一个ℓ_2球上定义的,g在几乎所有地方都连续两次微分,并且A∈R〜(k×d)是秩k矩阵,其中k(<<)d。我们提出了一种随机的,多项式复杂度采样方案来估计此类函数。我们的理论发展利用了来自低秩矩阵恢复的最新技术,这使我们能够导出函数f的多项式时间估计量以及统一的近似保证。我们证明了我们的方案也可以应用于形式为f(x)= ∑_(i = 1)〜k g_i(a_i〜Tx)的学习函数,只要f满足原点附近的某些平滑条件。我们还表征了该方案的噪声鲁棒性。最后,我们提供了数值示例来说明实际的理论界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号