首页> 外文期刊>Applied and Computational Harmonic Analysis >Frames of multi-windowed exponentials on subsets of R~d
【24h】

Frames of multi-windowed exponentials on subsets of R~d

机译:R〜d子集上的多窗口指数框架

获取原文
获取原文并翻译 | 示例

摘要

Given discrete subsets ∧_j (∩) R~d, j = 1,..., q, consider the set of windowed exponentials ∪_j~q=1{g_j(x)e~(2πi(λ,x)): λ ∈ ∧_j} on L~2(Ω). We show that a necessary and sufficient condition for the windows g_j to form a frame of windowed exponentials for L~2(Ω) with some ∧_j is that 0 < m ≤ max_(j∈J) |g_j| ≤ M almost everywhere on Ω for some subset J of {1,...,q}. If Ω is unbounded, we show that there is no frame of windowed exponentials if the Lebesgue measure of Ω is infinite. If Ω is unbounded but of finite measure, we give a simple sufficient condition for the existence of Fourier frames on L~2(Ω). At the same time, we also construct examples of unbounded sets with finite measure that have no tight exponential frame.
机译:给定离散子集∧_j(∩)R〜d,j = 1,...,q,请考虑开窗指数〜_j〜q = 1 {g_j(x)e〜(2πi(λ,x))的集合: L〜2(Ω)上的λ∈∧_j}。我们证明,窗口g_j构成一个带有〜_j的L〜2(Ω)的窗口指数框架的充要条件是0 <m≤max_(j∈J)| g_j |。对于{1,...,q}的某些子集J,在Ω上几乎各处都≤M。如果Ω是无界的,则表明Ω的Lebesgue测度是无限的时,没有窗口指数框架。如果Ω是无界的,但具有有限的度量,则我们给出L〜2(Ω)上存在Fourier框架的简单充分条件。同时,我们还构造了没有紧密指数框架的具有有限度量的无界集的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号