首页> 外文期刊>Applied and Computational Harmonic Analysis >Hard thresholding pursuit algorithms: Number of iterations
【24h】

Hard thresholding pursuit algorithms: Number of iterations

机译:硬阈值追踪算法:迭代次数

获取原文
获取原文并翻译 | 示例

摘要

The Hard Thresholding Pursuit algorithm for sparse recovery is revisited using a new theoretical analysis. The main result states that all sparse vectors can be exactly recovered from compressive linear measurements in a number of iterations at most proportional to the sparsity level as soon as the measurement matrix obeys a certain restricted isometry condition. The recovery is also robust to measurement error. The same conclusions are derived for a variation of Hard Thresholding Pursuit, called Graded Hard Thresholding Pursuit, which is a natural companion to Orthogonal Matching Pursuit and runs without a prior estimation of the sparsity level. In addition, for two extreme cases of the vector shape, it is shown that, with high probability on the draw of random measurements, a fixed sparse vector is robustly recovered in a number of iterations precisely equal to the sparsity level. These theoretical findings are experimentally validated, too. (C) 2016 Elsevier Inc. All rights reserved.
机译:使用新的理论分析重新探讨了用于稀疏恢复的硬阈值追踪算法。主要结果表明,只要测量矩阵遵循某个受限等轴测条件,就可以从压缩线性测量中以与稀疏度成比例的最大迭代次数精确地恢复所有稀疏矢量。该恢复对于测量误差也很稳定。对于硬阈值追踪的一种变体(称为分级硬阈值追踪),可以得出相同的结论,它是正交匹配追踪的自然伴侣,并且无需事先估计稀疏度即可运行。此外,对于矢量形状的两种极端情况,结果表明,在进行随机测量时,很有可能在精确等于稀疏度的迭代中稳健地恢复了固定的稀疏矢量。这些理论发现也经过实验验证。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号