首页> 外文期刊>Applications of Mathematics >DOMAIN DECOMPOSITION METHODS COUPLED WITH PARAREAL FOR THE TRANSIENT HEAT EQUATION IN 1 AND 2 SPATIAL DIMENSIONS
【24h】

DOMAIN DECOMPOSITION METHODS COUPLED WITH PARAREAL FOR THE TRANSIENT HEAT EQUATION IN 1 AND 2 SPATIAL DIMENSIONS

机译:1维和2维空间中瞬态热方程的与对流耦合的域分解方法

获取原文
获取原文并翻译 | 示例

摘要

We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudostationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the 2d, case we employ a nonoverlapping Schur complement method, while in the 1d case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.
机译:我们为一维和二维空间中的瞬态热方程提供了一种并行求解算法。通过最低阶一致有限元方法在空间上离散该问题。此外,一阶时间积分方案用于常微分方程组的数值解。对于后者,采用将时间间隔分解为子间隔的超现实方法。它导致并行解决较小的时间相关问题。在每个时间片上,通过域分解方法(DDM)求解伪平稳椭圆热方程。在第二种情况下,我们采用不重叠的Schur补码方法,而在第一种情况下,采用重叠的Schwarz DDM。我们在数值示例上记录了计算效率以及有限元半离散化方案的理论收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号