首页> 外文期刊>Applications of Mathematics >TWO-SIDED A POSTERIORI ERROR ESTIMATES FOR LINEAR ELLIPTIC PROBLEMS WITH MIXED BOUNDARY CONDITIONS
【24h】

TWO-SIDED A POSTERIORI ERROR ESTIMATES FOR LINEAR ELLIPTIC PROBLEMS WITH MIXED BOUNDARY CONDITIONS

机译:具有混合边界条件的线性椭圆问题的两步后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered in this work. On the base of this model, we present simple technologies for straightforward constructing computable upper and lower bounds for the error, which is understood as the difference between the exact solution of the model and its approximation measured in the corresponding energy norm. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions and are "flexible" in the sense that they can be, in principle, made as close to the true error as the resources of the used computer allow.
机译:本文致力于验证在计算机模拟中获得的近似解的准确性。此问题与后验误差估计密切相关,为计算误差提供了可计算的界限,并在解决方案域中检测此类误差太大且应执行某些网格细化的区域。在这项工作中,考虑了一个由线性椭圆(反应扩散)方程与Dirichlet / Neumann / Robin混合边界条件组成的数学模型。在此模型的基础上,我们提出了简单的技术,用于直接构造误差的可计算上限和下限,这被理解为模型的精确解与其在相应能量范数中测得的近似之间的差异。所获得的估计值完全独立于用于获得近似解的数值技术,并且在某种意义上说是“灵活的”,因为它们可以在原则上尽可能接近所用计算机资源所允许的真实误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号