首页> 外文期刊>Applications of Mathematics >ON THE WORST SCENARIO METHOD: APPLICATION TO A QUASILINEAR ELLIPTIC 2D-PROBLEM WITH
【24h】

ON THE WORST SCENARIO METHOD: APPLICATION TO A QUASILINEAR ELLIPTIC 2D-PROBLEM WITH

机译:最坏情况下的方法:在具有椭圆的拟线性椭圆二维问题上的应用

获取原文
获取原文并翻译 | 示例

摘要

We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the onedimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583-598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. Furthermore, it is shown that the Galerkin approximation of the state solution can be calculated by means of the Kachanov method as the limit of a sequence of solutions to linearized problems.
机译:我们将一个用于解决一类最坏情况问题的理论框架应用于带有非线性偏微分方程的问题。与P. Harasim在Appl中研究的一维问题相反。数学。 53(2008),No. 6,583-598,二维问题需要更严格的假设来限制可容许集,以确保非线性算子在检查状态问题中的单调性,并由此证明存在和状态解的唯一性。通过一系列近似最坏情况的收敛证明最坏情况的存在。此外,还表明,可以通过Kachanov方法来计算状态解的Galerkin近似值,作为对线性化问题的一系列求解的极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号