首页> 外文期刊>Applications of Mathematics >GOAL-ORIENTED ERROR ESTIMATES INCLUDING ALGEBRAIC ERRORS IN DISCONTINUOUS GALERKIN DISCRETIZATIONS OF LINEAR BOUNDARY VALUE PROBLEMS
【24h】

GOAL-ORIENTED ERROR ESTIMATES INCLUDING ALGEBRAIC ERRORS IN DISCONTINUOUS GALERKIN DISCRETIZATIONS OF LINEAR BOUNDARY VALUE PROBLEMS

机译:线性边界值问题在连续伽勒金离散中的代数误差估计,包括目标误差

获取原文
获取原文并翻译 | 示例

摘要

We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.
机译:我们处理线性边界值问题的不连续Galerkin逼近的后验误差控制。计算误差是在针对目标误差估计的双重加权残差法(DWR)框架中进行估计的,该方法需要解决其他(伴随)问题。我们专注于对代数系统的迭代解引起的代数误差的控制,该迭代解对应于原始问题和伴随问题。此外,我们提出了两种不同的重构技术,可以对误差估计器进行有效评估。最后,我们提出了一种复杂的算法,该算法可控制离散化和代数误差,并针对给定的感兴趣数量以接近最佳的方式驱动网格的自适应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号