首页> 外文期刊>Applicable Algebra in Engineering, Communication and Computing >Further crosscorrelation properties of sequences with the decimation factor d=fracpn+1p+1-fracpn-12{d=frac{p^n+1}{p+1}-frac{p^n-1}{2}}
【24h】

Further crosscorrelation properties of sequences with the decimation factor d=fracpn+1p+1-fracpn-12{d=frac{p^n+1}{p+1}-frac{p^n-1}{2}}

机译:抽取因子为d = fracp n + 1p + 1-fracp n -12 {d = frac {p ^ n + 1} {p + 1} -frac {p ^ n-1} {2}}

获取原文
获取原文并翻译 | 示例

摘要

For an odd integer n ≥ 3, an odd prime p ≡ 3(mod4) and d=fracpn+1p+1-fracpn-12{d=frac{p^n+1}{p+1}-frac{p^n-1}{2}}, the value distribution of the exponential sum åx Î mathbbFpn *wTrn1(x-gxd) (g Î mathbbFpn*){sumlimits_{xin mathbb{F}_{p^n}^{,*}}omega^{Tr^n_1(x-gamma x^{d})},(gammain mathbb{F}_{p^n}^{*})} is completely determined in this paper, where ω is a primitive complex p-th root of unity. This improves the results of Müller (1999) and Hu et al. (2001) about the crosscorrelation of sequences with the decimation factor d.
机译:对于n≥3的奇数整数,奇数素p≡3(mod4)和d = fracp n + 1p + 1-fracp n -12 {d = frac { p ^ n + 1} {p + 1} -frac {p ^ n-1} {2}},指数和å xÎmathbbF p n * w Tr n 1 (x-gx d (gγmathbbF p n * ){sumlimits_ {xin mathbb {F} _ {p ^ n} ^ { ,*}} omega ^ {Tr ^ n_1(x-gamma x ^ {d})},(gammain mathbb {F} _ {p ^ n} ^ {*})}完全确定,其中ω为原始复数的第p个根。这改善了Müller(1999)和Hu等的结果。 (2001)关于序列与抽取因子d的互相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号