首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Parallel Genetic-Algorithm Optimization of Shaped Beam Coverage Areas Using Planar 2-D Phased Arrays
【24h】

Parallel Genetic-Algorithm Optimization of Shaped Beam Coverage Areas Using Planar 2-D Phased Arrays

机译:平面二维相控阵对成形波束覆盖区域的并行遗传算法优化

获取原文
获取原文并翻译 | 示例

摘要

A parallel genetic algorithm (GA) optimization tool has been developed for the synthesis of arbitrarily shaped beam coverage using planar 2-D phased-array antennas. Typically, the synthesis of a contoured beam footprint using a planar 2-D array is difficult because of the inherently large number of degrees of freedom involved (in general, the amplitude and phase of each element must be determined). We make use of a parallel GA tool in this study to compensate for this aspect of the design problem. The algorithm essentially compares a desired pattern envelope with that of trial arrays, and quantifies the effectiveness or desirability of each test case via a fitness function. The GA uses this information to rank and select subsequent arrays over a given number of generations via the conventional stochastic operators, i.e., selection, crossover, and mutation. Each fitness evaluation of a trial pattern is done on a node of the Aerospace Fellowship cluster supercomputer, which increases the speed of the algorithm linearly with the number of nodes. Because of the continuous nature of the parameters for this optimization problem, a real parameter encoding scheme is employed for the GA chromosome in order to avoid the quantization errors associated with a binary representation. A benchmark 10 $,times,$10 (100) element array is employed, and various results of optimized coverage patterns are shown herein to illustrate the effectiveness and validity of the technique.
机译:已经开发了一种并行遗传算法(GA)优化工具,用于使用平面2-D相控阵天线来合成任意形状的波束覆盖范围。通常,由于涉及固有的大量自由度(通常必须确定每个元素的振幅和相位),因此使用平面二维阵列合成轮廓化的光束足迹非常困难。在这项研究中,我们使用了并行GA工具来补偿设计问题的这一方面。该算法本质上将所需的模式包络与试验阵列的包络进行比较,并通过适应度函数量化每个测试用例的有效性或可取性。 GA使用此信息通过常规的随机运算符(即选择,交叉和变异)对给定数量的世代中的后续数组进行排序和选择。对试验模式的每次适应性评估都是在航空航天团簇超级计算机的一个节点上完成的,这会随着节点数量的增加而线性提高算法的速度。由于此优化问题的参数具有连续性,因此对GA染色体采用了真实的参数编码方案,以避免与二进制表示形式相关的量化误差。使用基准的10×10(100)元素数组,此处显示了优化的覆盖模式的各种结果以说明该技术的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号