首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Application of Multiplicative Regularization to the Finite-Element Contrast Source Inversion Method
【24h】

Application of Multiplicative Regularization to the Finite-Element Contrast Source Inversion Method

机译:乘法正则化在有限元对比源反演方法中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multiplicative regularization is applied to the finite-element contrast source inversion (FEM-CSI) algorithm recently developed for microwave tomography. It is described for the two-dimensional (2D) transverse-magnetic (TM) case and tested by inverting experimental data where the fields can be approximated as TM. The unknown contrast, which is to be reconstructed, is represented using nodal variables and first-order basis functions on triangular elements; the same first-order basis functions used in the FEM solution of the accompanying field problem. This approach is different from other MR-CSI implementations where the contrast variables are located on a uniform grid of rectangular cells and represented using pulse basis functions. The linear basis function representation of the contrast makes it difficult to apply the weighted $L_{2}$-norm total variation multiplicative regularization which requires that gradient and divergence operators be applied to the predicted contrast at each iteration of the inversion algorithm; the use of finite-difference operators for this purpose becomes unwieldy. Thus, a new technique is introduced to perform these operators on the triangular mesh.
机译:乘法正则化应用于最近为微波层析成像开发的有限元对比源反演(FEM-CSI)算法。它针对二维(2D)横向磁(TM)情况进行了描述,并通过反转实验数据进行了测试,其中磁场可以近似为TM。使用节点变量和一阶基础函数在三角形元素上表示待重建的未知对比度。与伴随场问题的FEM解决方案中使用的相同一阶基函数。此方法与其他MR-CSI实现方式不同,在其他MR-CSI实现方式中,对比度变量位于矩形单元的均匀网格上,并使用脉冲基函数表示。对比度的线性基函数表示法使得难以应用加权的 $ L_ {2} $ -范数总方差可乘正则化,要求在反演算法的每次迭代中将梯度和散度运算符应用于预测的对比度;为此目的使用有限差分运算符变得很笨拙。因此,引入了一种新技术来在三角形网格上执行这些算子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号