首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Microwave Imaging of Nonsparse Domains Using Born Iterative Method With Wavelet Transform and Block Sparse Bayesian Learning
【24h】

Microwave Imaging of Nonsparse Domains Using Born Iterative Method With Wavelet Transform and Block Sparse Bayesian Learning

机译:小波变换和块稀疏贝叶斯学习的Born迭代方法对非稀疏域进行微波成像

获取原文
获取原文并翻译 | 示例

摘要

A microwave technique utilizing the combination of wavelet transform, block sparse Bayesian learning (BSBL), and Born iterative method (BIM) is proposed to image nonsparse domains. The wavelet transform is implemented to convert the nonsparse domain into a sparse domain. Then, BSBL framework based on expectation-maximization (EM) algorithm is applied on the BIM model to reconstruct the original profile of the nonsparse domain. The presented imaging results of a nonsparse model indicate that the proposed technique, in comparison with traditional microwave imaging or compressive-sensing (CS) algorithms, achieve very low normalized error rate (NER) at a short computational time using only small number of antennas. The accuracy, robustness, and effectiveness of the proposed method are further assessed by employing it to detect a hemorrhagic brain stroke in a realistic, numerical head model, which is a nonsparse domain. The obtained results indicate the capability for the technique to detect an early stroke in the realistic nonsparse environment of the human head using only six antennas.
机译:提出了一种结合小波变换,块稀疏贝叶斯学习(BSBL)和Born迭代方法(BIM)的微波技术来对非稀疏域成像。实施小波变换以将非稀疏域转换为稀疏域。然后,将基于期望最大化(EM)算法的BSBL框架应用于BIM模型,以重建非稀疏域的原始配置文件。提出的非稀疏模型的成像结果表明,与传统的微波成像或压缩感测(CS)算法相比,所提出的技术仅使用少量天线即可在较短的计算时间内实现极低的归一化错误率(NER)。通过在现实的,数字化的头部模型(非稀疏域)中检测出血性脑卒中,可以进一步评估所提出方法的准确性,鲁棒性和有效性。获得的结果表明该技术仅使用六个天线就可以在人头的实际稀疏环境中检测早期中风的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号