首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Joint ISAR Imaging and Cross-Range Scaling Method Based on Compressive Sensing With Adaptive Dictionary
【24h】

Joint ISAR Imaging and Cross-Range Scaling Method Based on Compressive Sensing With Adaptive Dictionary

机译:基于自适应字典的压缩感知联合ISAR成像和跨距离缩放方法

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) is successfully applied in inverse synthetic aperture radar (ISAR) imaging. But, as target rotation rate is not concerned in the CS-based imaging methods, the obtained image cannot be scaled in the cross-range dimension. Consequently, difficulties arise in extracting the target geometrical information from the CS ISAR image. But, target geometrical size is an important parameter in automatic radar target recognition. To remedy this problem, a joint ISAR imaging and cross-range scaling method is proposed. In the proposed method, an adaptive parametric dictionary, comprising chirp rate parameter, is used to represent the observed data. By minimizing the reconstruction error, sparsity-constrained optimization, combined with the chirp-rate parameter and target reflective coefficient, is established. To find a solution to the nonlinear and nonconvex optimization problem, an iterative procedure is developed. Finally, with the help of the chirp-rate, target rotation rate can be estimated by the least square method, and the ISAR image can be scaled in cross-range. Experimental results show that the proposed method can fit the observed data better than the method using a fixed Fourier dictionary. Besides, cross-range scaled ISAR images can be obtained with limited pulses.
机译:压缩感测(CS)已成功应用于逆合成孔径雷达(ISAR)成像。但是,由于基于CS的成像方法不关心目标旋转速率,因此无法在跨范围维度上缩放获得的图像。因此,从CS ISAR图像中提取目标几何信息会出现困难。但是,目标几何尺寸是自动雷达目标识别中的重要参数。为了解决这个问题,提出了一种联合的ISAR成像和跨范围缩放方法。在提出的方法中,包含线性调频率参数的自适应参数字典用于表示观测数据。通过最小化重建误差,建立了结合线性调频率参数和目标反射系数的稀疏约束优化。为了找到非线性和非凸优化问题的解决方案,开发了一个迭代过程。最后,借助线性调频率,可以通过最小二乘法估算目标旋转速度,并且可以在跨范围内缩放ISAR图像。实验结果表明,与使用固定傅里叶字典的方法相比,该方法能更好地拟合观测数据。此外,可以用有限的脉冲获得跨范围缩放的ISAR图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号